Использование негативных действий пользователей для улучшения качества рекомендательных систем
- Авторы: Жарова М.А.1,2, Цурков В.И.2
-
Учреждения:
- МФТИ
- ФИЦ ИУ РАН
- Выпуск: № 4 (2025)
- Страницы: 132-148
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- URL: https://freezetech.ru/0002-3388/article/view/689643
- DOI: https://doi.org/10.31857/S0002338825040092
- EDN: https://elibrary.ru/BPJDWB
- ID: 689643
Цитировать
Полный текст



Аннотация
Рекомендательные системы находят все более широкое применение, охватывая множество сфер. Вместе с тем возрастает количество нестандартных случаев, связанных с необычными типами данных, на которых традиционные подходы не всегда эффективны. Например, при ограниченном количестве объектов более результативным решением становятся методы, основанные на обычных алгоритмах классификации. Предлагается способ повышения качества рекомендаций в рамках такого подхода за счет учета негативных взаимодействий пользователей с объектами. Интеграция этой информации позволяет более точно моделировать как предпочтения, так и избегаемые элементы. Представленный метод улучшает персонализацию рекомендаций даже в условиях высокой взаимосвязанности и ограниченности количества объектов.
Ключевые слова
Полный текст

Об авторах
М. А. Жарова
МФТИ; ФИЦ ИУ РАН
Автор, ответственный за переписку.
Email: zharova.ma@phystech.edu
Россия, Долгопрудный; Москва
В. И. Цурков
ФИЦ ИУ РАН
Email: v.tsurkov@frccsc.ru
Россия, Москва
Список литературы
- Cano E., Morisio M. Hybrid Recommender Systems: A Systematic Literature Review // Intelligent Data Analysis. 2017. V. 21. P. 1487–1524.
- Zharova M., Tsurkov V. Neural Network Approaches for Recommender Systems // J. Computer and Systems Sciences International. 2024. V. 62. P. 1048–1062.
- Zharova M., Tsurkov V. Boosting Based Recommender System // J. Computer and Systems Sciences International. 2024. V. 63. P. 922–940.
- Xinran H., Junfeng P., Ou J. Practical Lessons from Predicting Clicks on Ads at Facebook // Proc. 8th Intern. Workshop on Data Mining for Online Advertising. N.Y., USA, 2014. P 1–9.
- Paul C., Jay A., Emre S. Deep Neural Networks for YouTube Recommendations // Proc. 10th ACM Conf. on Recommender Systems. Boston, USA, 2016. P 191–198.
- Clark J. Target Variable Engineering // arXiv:2310.09440, 2023.
- Tschalzev A., Marton S. A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data // arXiv:2407.02112, 2024.
- Ke1 G., Meng Q., Finley T. LightGBM: A Highly Efficient Gradient Boosting Decision Tree // Advances in Neural Information Processing Systems. 2017. P. 3146–3154.
- Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System //arXiv:1603.02754v3, 2016.
- Dorogush A., Prokhorenkova L., Gusev G. CatBoost: Unbiased Boosting with Categorical Features // arXiv:1706.09516v5, 2019.
- Имплементация библиотеки для подбора гиперпараметров Optuna на Python // GitHub. Optuna: webcite https://github.com/optuna/optuna (accessed: 07.02.2025).
- Имплементация библиотеки для подбора гиперпараметров HyperOpt на Python // GitHub. HyperOpt: webcite https://github.com/hyperopt/hyperopt (accessed: 07.02.2025).
- Fazulyanov D., Guseva A. Adaptive Recommendation System for Media Services: Analysis of User Interactions and Their Impact on Content Personalization // Technical sciences. 2024. № 5. P. 82–88.
- Hamed L., Abbar S., Haouari A. The Impact of Negative Preferences on a Recommendation Process // Intern. Conf. on Multimedia Computing and Systems (IEEE). Tangiers, Morocco, 2012. P. 675–680.
- Ma H., Xie R., Meng L., Feng F. Negative Sampling in Recommendation: A Survey and Future Directions // arXiv:2409.07237, 2024.
- Paudel B., Luck S., Bernstein A. Loss Aversion in Recommender Systems: Utilizing Negative User Preference to Improve Recommendation Quality // arXiv:1812.11422, 2018.
- He X., Liao L. Neural Collaborative Filtering // arXiv:1708.05031, 2017.
- Rendle S., Freudenthaler C. BPR: Bayesian Personalized Ranking from Implicit Feedback // arXiv:1205.2618, 2012.
- Weston J., Bengio S., Usunier N. Scaling Up To Large Vocabulary Image Annotation // Proc. 22nd Intern. Joint Conf. on Artificial Intelligence. Barcelona, Spain, 2011. P. 2764–2770.
- Lin T., Goyal P. Focal Loss for Dense Object Detection //arXiv:1708.02002, 2017.
- Wu Y., Xie R. DFGNN: Dual-frequency Graph Neural Network for Sign-aware Feedback // arXiv:2405.15280, 2024.
- Lin G., Gao C. Dual-interest Factorization-heads Attention for Sequential Recommendation // Proc. ACM Web Conf. Ostin, USA, 2017. P. 917–927.
- Vaswani A., Shazeer N., Parma N. Attention Is All You Need // arXiv:1706.03762, 2017.
- Kang W., McAuley J. Self-Attentive Sequential Recommendation // arXiv:1808.09781, 2018.
- Sun F., Liu J. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer // arXiv:1904.06690, 2019.
- Pereira Moreira G., Rabhi S. Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation // Proc. 15th ACM Conf. on Recommender Systems. Amsterdam, Netherlands, 2021. P. 143–153.
- Wang Y., Xun J. EAGER: Two-Stream Generative Recommender with Behavior-Semantic Collaboration // arXiv:2406.14017v1, 2024.
- Gao M., Zhang J. Recommender Systems Based on Generative Adversarial Networks: A Problem-Driven Perspective // arXiv:2003.02474, 2020.
- Liu Z., Ma Y. Contrastive Learning for Recommender System // arXiv:2101.01317, 2021.
- Ye H., Li X. On the Sweet Spot of Contrastive Views for Knowledge-enhanced Recommendation // arXiv:2309.13384, 2023.
- Serrano N. Bellogin A. Siamese Neural Networks in Recommendation // Neural Computing and Applications. 2023. V. 35. P. 13941–13953.
- Chen X. Yao L. Deep Reinforcement Learning in Recommender Systems: A Survey and New Perspectives // Knowledge-Based Systems. 2023. V. 264. № 110335.
- Ie E., Jain V. Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology // arXiv:1905.12767, 2019.
- Cena F., Console L., Vernero F. How to Deal with Negative Preferences in Recommender Systems: a Theoretical Framework // J. Intelligent Information Systems. 2023. V. 60. P. 23–47.
- Alzubaidi L., Bai J., Al-Sabaawi A. A Survey on Deep Learning Tools Dealing with Data Scarcity: Definitions, Challenges, Solutions, Tips, and Applications // J. Big Data. 2023. V. 10. № 46.
- Grinsztajn L., Oyallon E., Varoquaux G. Why Do Tree-Based Models Still Outperform Deep Learning on Tabular Data? // arXiv:2207.08815, 2022.
- Alzubaidi L., Zhang J., Humaidi A. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions // J. Big Data. 2021. V. 8. № 53.
- Borisov V., Leemann T., Sebler K. Deep Neural Networks and Tabular Data: A Survey // IEEE Transactions on Neural Networks and Learning Systems. 2024. V. 35. № 6. P 7499–7519.
- Bentejac C., Csorgo A., Martinez-Munoz G. A Comparative Analysis of Gradient Boosting Algorithms // Artificial Intelligence Review. 2021. V. 54. P. 1937–1967.
- Sahour H., Gholami V., Torkaman J. Random Forest and Extreme Gradient Boosting Algorithms for Streamflow Modeling Using Vessel Features and Tree-Rings // Environmental Earth Sciences. 2021. V. 80. № 747.
- Demidova L., Sharshatov M., Shykhyev A. Methods for Solving the Class Imbalance Problem in Binary Classification Task // Information Technology and Data Standardization. 2024. № 3. P. 22–33.
- Wang Y., Halpern Y., Chan S. Learning from Negative User Feedback and Measuring Responsiveness for Sequential Recommenders // Proc. 17th ACM Conf. on Recommender System. Singapore, Singapore, 2023. P. 1049–1053.
- Paudel B., Luck S., Bernstein A. Loss Aversion in Recommender Systems: Utilizing Negative User Preference to Improve Recommendation Quality // arXiv:1812.11422, 2018.
- Wang X., Wu Y. An Improved HEAPSORT Algorithm with Nlogn – 0.788928n Comparisons in the Worst Case // J. Computer Science and Technology. 2007. V. 22. P. 898–903.
- Zhang X., Wang H., Liu Y. Retention Depolarization in Recommender System // Proc. ACM Web Conf. Singapore, Singapore. 2024. P. 1126–1137.
- Jadon A., Patil A. A Comprehensive Survey of Evaluation Techniques for Recommendation Systems // arXiv:2312.16015, 2024.
- Имплементация модели CatBoost на Python // GitHub. CatBoost: webcite https://github.com/catboost/catboost (accessed: 07.02.2025).
Дополнительные файлы
