Влияние строения карбонильного компонента и состава катализатора на синтез оксиметиленовых эфиров – низкоуглеродных компонентов горюче-смазочных материалов

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Показана принципиальная возможность получения экологичных компонентов горюче-смазочных материалов – оксиметиленовых эфиров – на базе отечественного сырья с использованием отечественного катализатора. Синтезы проводили путем конденсации формальдегида, высвобождающегося при ацидолизе его полимерных форм, со спиртами. Показано, что путем оптимизации параметров процесса синтеза можно добиться конверсии и выхода целевых продуктов на уровне не менее 60–70% при любом строении карбонильного компонента и составе катализатора. Показано, что снижение размера частиц и степени полимеризации параформальдегида, а также использование сухих типов катионообменных смол в качестве катализатора способствует увеличению не только скорости реакции, но и повышению максимально достижимой конверсии сырья.

Sobre autores

A. Cherepanova

Institute of Petroleum Chemistry named after A. V. Topchiev of RAS

Email: cherepanova@ips.ac.ru
Moscow, 119991 Russia

K. Dement'ev

Institute of Petroleum Chemistry named after A. V. Topchiev of RAS

Email: cherepanova@ips.ac.ru
Moscow, 119991 Russia

A. Khrapov

Institute of Petroleum Chemistry named after A. V. Topchiev of RAS

Email: cherepanova@ips.ac.ru
Moscow, 119991 Russia

A. Maximov

Institute of Petroleum Chemistry named after A. V. Topchiev of RAS

Autor responsável pela correspondência
Email: cherepanova@ips.ac.ru
Moscow, 119991 Russia

Bibliografia

  1. Bhatelia T., Lee W.J., Samanta C., Patel J., Bordoloi A. Processes for the production of oxymethylene ethers: promising synthetic diesel additives // Asia-Pacific J. Chem. Eng. 2017. V. 12. P. 827–837. https://doi.org/10.1002/apj.2119
  2. Baranowski C.J., Bahmanpour A.M., Kröcher O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review // Appl. Catal. B: Environ. 2017. V. 217. P. 407–420. https://doi.org/10.1016/j.apcatb.2017.06.007
  3. Liu J., Wang L., Wang P., Sun P., Liu H., Meng Z., Zhang L. Ma H. An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines // Fuel. 2022. V. 318. ID 123582. https://doi.org/10.1016/j.fuel.2022.123582
  4. Bartholet D.L., Arellano-Treviño M.A., Chan F.L., Lucas S., Zhu J., St. John P.C., Alleman T.L., McEnally C.S., Pfefferle L.D., Ruddy D.A., Windom B., Foust T.D., Reardon K.F. Property predictions demonstrate that structural diversity can improve the performance of polyoxymethylene ethers as potential bio-based diesel fuels // Fuel. 2021. V. 295. ID 120509. https://doi.org/10.1016/j.fuel.2021.120509
  5. Drexler M., Haltenort P., Zevaco T.A., Arnold U., Sauer J. Synthesis of tailored oxymethylene ether (OME) fuels: Via transacetalization reactions // Sustain. Energy Fuels. 2021. V. 5. P. 4311–4326. https://doi.org/10.1039/D1SE00631B
  6. Bowker M. Methanol synthesis from CO2 hydrogenation // ChemCatChem. 2019. V. 11. № 17. P. 4238–4246. https://doi.org/10.1002/cctc.201900401
  7. Sun D., Sato S., Ueda W., Primo A., Garcia H., Corma A. Production of C4 and C5 alcohols from biomass-derived materials // Green Chem. 2016. V. 18. P. 2579–2597. https://doi.org/10.1039/C6GC00377J
  8. Scully S.M., Orlygsson J. Chapter 5. Biological production of alcohols // Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier Inc., 2019. P. 83–108. https://doi.org/10.1016/B978-0-12-817941-3.00005-X
  9. Паланкоев Т.А., Кузнецов П.С., Беденко С.П., Дементьев К.И. Низкоуглеродные компоненты моторных топлив на основе оксидов углерода (обзор) // Нефтехимия. 2024. Т. 64. № 3. С. 185–203. https://doi.org/10.31857/S0028242124030012
  10. [Palankoev T.A., Kuznetsov P.S., Bedenko S.P., Dement’ev K.I. Low-carbon engine fuel components based on carbon oxides (a review) // Perol. Chemisrty. 2024. V. 64. P. 331–345. https://doi.org/10.1134/S096554412402018X]
  11. Arellano-Treviño M.A., Bartholet D., To A.T., Bartling A.W., Baddour F.G., Alleman T.L., Christensen E.D., Fioroni G.M., Hays C., Luecke J., Zhu J., McEnally C.S., Pfefferle L.D., Reardon K.F., Foust T.D., Ruddy D.A. Synthesis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks with improved fuel properties // ACS Sustain. Chem. Eng. 2021. V. 9. № 18. P. 6266–6273. https://doi.org/10.1021/acssuschemeng.0c09216
  12. Arellano-Treviño M.A., Alleman T.L., Brim R., To A.T., Zhu J., McEnally C.S., Hays C., Luecke J., Pfefferle L.D., Foust T.D., Ruddy D.A. Blended fuel property analysis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks // Fuel. 2022. V. 322. ID 124220. https://doi.org/10.1016/j.fuel.2022.124220
  13. Lautenschütz L., Oestreich D., Seidenspinner P., Arnold U., Dinjus E., Sauer J. Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers // Fuel. 2016. V. 173. P. 129–137. https://doi.org/10.1016/j.fuel.2016.01.060
  14. Lucas S.P., Labbe N.J., Marchese A.J., Windom B. Pre-vaporized ignition behavior of ethyl- and propyl-terminated oxymethylene ethers // Proc. Combust. Inst. 2023. V. 39. № 1. P. 765–774. https://doi.org/10.1016/j.proci.2022.08.065
  15. Lucas S.P., Chan F.L., Fioroni G.M., Foust T.D., Gilbert A., Luecke J., McEnally C.S., Serdoncillo J.J.A., Zdanowicz A.J., Zhu J., Windom B. Fuel properties of oxymethylene ethers with terminating groups from methyl to butyl // Energy Fuels. 2022. V. 36. № 17. P. 10213–10225. https://doi.org/10.1021/acs.energyfuels.2c01414
  16. Arellano-Treviño M.A., Baddour F.G., To A.T., Alleman T.L., Hays C., Luecke J., Zhu J., McEnally C.S., Pfefferle L.D., Foust T.D., Ruddy D.A. Diesel fuel properties of renewable polyoxymethylene ethers with structural diversity // Fuel. 2024. V. 358. Pt. B. ID 130353. https://doi.org/10.1016/j.fuel.2023.130353
  17. Lucas S.P., Zdanowicz A.J., Wolff W.W., Windom B.C. Combustion characteristics of diisopropoxymethane, a low-reactivity oxymethylene ether // Fuel. 2024. V. 362. ID 130727. https://doi.org/10.1016/j.fuel.2023.130727
  18. Берлин Ал.Ал., Дебердеев Р.Я., Перухин Ю.В., Гарипов Р.М. Полиоксиметилены. М.: Наука, 2008. 286 c.
  19. Яновская Л.А., Юфит С.С., Кучеров В.Ф. Химия ацеталей. М.: Наука, 1975. 275 с.
  20. Breitkreuz C.F., Hevert N., Schmitz N., Burger J., Hasse H. Synthesis of methylal and poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane // Ind. Eng. Chem. Res. 2022. V. 61. № 23. P. 7810–7822. https://doi.org/10.1021/acs.iecr.2c00790
  21. Klokic S., Hochegger M., Schober S., Mittelbach M. Investigations on an efficient and environmentally benign poly(oxymethylene) dimethyl ether (OME3-5) fuel synthesis // Renew. Energy. 2020. V. 147. Pt. 1. P. 2151–2159. https://doi.org/10.1016/j.renene.2019.10.004
  22. Grajales E.J., Alarcón E.A., Villa A.L. Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis // Thermochim. Acta. 2015. V. 609. P. 49–60. https://doi.org/10.1016/j.tca.2015.04.016
  23. Lüftl S., Visakh P.M., Chandran S. Polyoxymethylene handbook – structure, properties, applications and their nanocomposites. Scrivener Publishing LLC. 2014. 448 p. https://doi.org/10.1002/9781118914458
  24. Guo J., Chin Y.-H. C. Kinetic and thermodynamic requirements for polyoxymethylene dimethyl ether synthesis catalyzed by ion-exchange resin // ACS Catal. 2024. V. 14. № 16. P. 12564–12580. https://doi.org/10.1021/acscatal.4c01616

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025