Methods for Forming Gas, Cluster Spray, and Liquid Targets in a Laser-Plasma Radiation Source

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Methods for the formation of liquid, microdroplet, cluster, and gas targets in vacuum for use in laser-plasma radiation sources are considered. The characteristics of the used target-formation systems and gas-supply systems based on them are given. These systems form pulsed and static jets with low mass flow, on the order of ~70 mL/h of liquid or 1500 cm3/h of gas, which allows pumping out the vacuum volume with one turbomolecular pump with a capacity of 1000 L/s.

Sobre autores

V. Guseva

Lobachevsky Nizhny Novgorod State University

Email: nechay@ipm.sci-nnov.ru
603950, Nizhny Novgorod, Russia

M. Korepanov

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: nechay@ipm.sci-nnov.ru
426065, Izhevsk, Russia

M. Koroleva

Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences

Email: nechay@ipm.sci-nnov.ru
426065, Izhevsk, Russia

A. Nechay

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: nechay@ipm.sci-nnov.ru
603087, Nizhny Novgorod, Russia

A. Perekalov

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: nechay@ipm.sci-nnov.ru
603087, Nizhny Novgorod, Russia

N. Salashchenko

Institute of Physics of Microstructures, Russian Academy of Sciences

Email: nechay@ipm.sci-nnov.ru
603087, Nizhny Novgorod, Russia

N. Chkhalo

Institute of Physics of Microstructures, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nechay@ipm.sci-nnov.ru
603087, Nizhny Novgorod, Russia

Bibliografia

  1. Абраменко Д.Б., Анциферов П.С., Астахов Д.И., Виноходов А.Ю., Вичев И.Ю., Гаязов Р.Р., Якушкин А.А. // Успехи физических наук. 2019. Т. 189. № 3. С. 323. https://doi.org/10.3367/UFNr.2018.06.038447
  2. Berglund M., Rymell L., Hertz H.M., Wilhein T. // Review of Scientific Instruments. 1998. V. 69. P. 2361. https://doi.org/10.1063/1.1148944
  3. Wieland M., Wilhein T., Faubel M., Ellert C., Schmidt M., Sublemontier O. // Applied Physics B. 2001. V. 72. P. 591. https://doi.org/10.1007/s003400100542
  4. De Groot J., Hemberg O., Holmberg A., Hertz H.M. // Journal of Applied Physics. 2003. V. 94. P. 3717. https://doi.org/10.1063/1.1602571
  5. Malmqvist L., Rymell L., Berglund M., Hertz H.M. // Review of Scientific Instruments. 1996. V. 12. P. 4150. https://doi.org/10.1063/1.1147561
  6. Düsterer S., Schwoerer H., Ziegler W., Ziener C., Sauerbrey R. // Applied Physics B. 2001. V. 73. P. 693. https://doi.org/10.1007/s003400100730
  7. Нечай А.Н., Перекалов А.А., Чхало Н.И., Сала-щенко Н.Н. // Письма в ЖТФ. 2019. Т. 45. № 19. С. 14. https://doi.org/10.21883/PJTF.2019.19.48310.17862
  8. Hansson B.A.M., Hertz H.M. // Journal of Physics D: Applied Physics. 2004. V. 37. № 23. P. 3233. https://doi.org/10.1088/0022-3727/37/23/004
  9. Hansson B.A., Hemberg O., Hertz H.M., Berglund M., Choi H.J., Jacobsson B., Wilner M. // Review of Scientific Instruments. 2004. V. 75. № 6. P. 2122. https://doi.org/10.1063/1.1755441
  10. Fogelqvist E., Kördel M., Selin M., Hertz H.M. // Journal of Applied Physics. 2015. V. 118. № 17. P. 174902. https://doi.org/10.1063/1.4935143
  11. Holburg J., Müller M., Mann K., Wieneke S. // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2019. V 37. № 3. P. 031303. https://doi.org/10.1116/1.5089201
  12. Fiedorowicz H., Bartnik A., Szczurek M., Daido H., Sakaya N., Kmetik V., Wilhein T. // Optics Communications. 1999. V. 163. № 1–3. P. 103. https://doi.org/10.1016/S0030-4018(99)00100-5
  13. Гарбарук А.В., Демидов Д.А., Калмыков С.Г., Сасин М.Э. // ЖТФ. 2011. Т. 81. № 6. С. 20.
  14. Нечай А.Н., Перекалов А.А., Чхало Н.И., Салащенко Н.Н., Забродин И.Г., Каськов И.А., Пестов А.Е. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2019. № 9. С. 83. https://doi.org/10.1134/S0207352819090099
  15. Koroleva M.R., Mitrukova E.A., Korepanov M.A. // Journal of Physics: Conference Series. VI All-Russian Conference “Thermophysics and Physical Hydrodynamicsˮ and the School for Young Scientists “Thermal Physics and Physical Hydrodynamics: Modern Challengesˮ. 2021. P. 012016. https://doi.org/10.1088/1742-6596/2057/1/012016
  16. Ramos A., Fernández J.M., Tejeda G., Montero S. // Phys. Rev. A. V. 72. № 5. P. 053204. https://doi.org/10.1103/PhysRevA.72.053204
  17. Hagena O.F. // Surface Science. 1981. V. 106. № 1. P. 101.
  18. Hagena O.F., Obert W. // The journal of Chemical physics. 1972. V. 56. № 5. P. 1793. https://doi.org/10.1063/1.1677455

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (270KB)
3.

Baixar (90KB)
4.

Baixar (109KB)
5.

Baixar (111KB)
6.

Baixar (385KB)
7.

Baixar (252KB)
8.

Baixar (170KB)
9.

Baixar (94KB)
10.

Baixar (257KB)
11.

Baixar (85KB)
12.

Baixar (263KB)
13.

Baixar (189KB)

Declaração de direitos autorais © В.Е. Гусева, М.А. Корепанов, М.Р. Королева, А.Н. Нечай, А.А. Перекалов, Н.Н. Салащенко, Н.И. Чхало, 2023