Study of Sensitivity Distribution Along the Contour of a Fiber-Optic Sensor Based on a Sagnac Interferometer

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sensitivity of the Sagnac interferometer for various acoustic influence coordinates was studied. The principles of the formation of a dead zone in an acoustic distributed fiber-optic sensor based on the Sagnac interferometer have been obtained and experimentally confirmed. The response of the interferometer was studied for different types of acoustic impact on the circuit: in the form of a rectangular pulse, sinusoidal, and in the form of a periodic triangular function. The nature of the change in the phase difference at the output of the Sagnac interferometer for each of them was studied. With the found value of the typical frequency ft,hit=10.8 kHz and a loop length of 20 km, numerical simulation and experimental study of the amplitude of the phase difference under acoustic impact through each 1 km of the loop in the range from 0 to 10 km were carried out. A dead zone elimination method is proposed for integrating the Sagnac interferometer into a complex monitoring system using a phase-sensitive optical time domain reflectometer.

作者简介

T. Gritsenko

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

N. Dyakova

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

A. Zhirnov

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

K. Stepanov

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

R. Khan

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

K. Koshelev

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

A. Pnev

Bauman Moscow State Technical University

Email: chobantv@yandex.ru
105005, Moscow, Russia

V. Karasik

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: chobantv@yandex.ru
105005, Moscow, Russia

参考

  1. Gorshkov B.G., Yüksel K., Fotiadi A.A., Wuilpart M., Korobko D.A., Zhirnov A.A., Stepanov K.V., Turov A.T., Konstantinov Y.A., Lobach I.A. // Sensors. 2022. V. 22 (3). P. 1033. https://doi.org/10.3390/s22031033
  2. Zhirnov A.A., Stepanov K.V., Sazonkin S.G., Choban T.V., Koshelev K.I., Chernutsky A.O., Pnev A.B., Novikov A.O., Yagodnikov D.A. // Sensors. 2021. V. 21 (23). P. 7836. https://doi.org/10.3390/s21237836
  3. Choban T.V., Zhirnov A.A., Chernutsky A.O., Stepanov K.V., Pniov A.B., Galzerano G., Karasik V.E., Svelto C.J. // Phys. Conf. Ser. 2019. V. 1410 (1). P. 012108. https://doi.org/10.1088/1742-6596/1410/1/012108
  4. Peng F., Wu H., Jia X.-H., Rao Y.-J., Wang Z.-N., Peng Z.-P. // Opt. Express, 2014. V. 22 (11). P. 13804. https://doi.org/10.1364/OE.22.013804
  5. Stepanov K.V., Zhirnov A.A., Chernutsky A.O., Koshel-ev K.I., Pnev A.B., Lopunov A.I., Butov O.V. // Sensors, 2020. V. 20. P. 6431. https://doi.org/10.3390/s20226431
  6. Stepanov K.V., Zhirnov A.A., Chernutsky A.O., Choban T.V., Pnev A.B., Lopunov A.I., Butov O.V. // IEEE Proc. of International Conference Laser Optics 2020. P. 1. https://doi.org/10.1109/ICLO48556.2020.9285505
  7. Pi S., Wang B., Zhao J., Hong G., Zhao D., Jia B. // Proc. of Interferometry XVII: Techniques and Analysis. 2014. V. 9203. https://doi.org/10.1117/12.2059925
  8. Liu K., Jin X., Jiang J., Xu T., Ding Z., Huang Y., Sun Z., Xue K., Li S., Liu T. // IEEE Sens. J. 2022. V. 22. P. 21428. https://doi.org/10.1109/JSEN.2022.3213036
  9. Zhirnov A.A., Choban T.V., StePanov K.V., Koshelev K.I., Chernutsky A.O., Pnev A.B., Karasik V.E. // Sensors. 2022. V. 22(7). P. 2772. https://doi.org/10.3390/s22072772
  10. Spammer J., Swart L., Chtcherbakov A., Lightwave J. // Technol, 1997. V. 15 (6). P. 972. https://doi.org/10.1109/50.588669
  11. Choban T.V., Zhirnov A.A., Tolstoguzov V.L., Tikhomir-ov S.V., Pnev A.B., Karasik V.E., Svelto C. // IEEE Proc. of International Conference Laser Optics 2020. P. 1. https://doi.org/10.1109/ICLO48556.2020.9285542.
  12. Huang J., Chen Y., Peng H., Zhou P., Song Q., Huang P., Xiao Q., Jia B. // Opt. Commun. 2021. V. 57 (2). P. 027104. https://doi.org/10.1016/j.optcom.2020.126420
  13. Choban T.V., Zhirnov A.A., Stepanov K.V., Khan R.I., Pniov A.B., Svelto C., Lopunov A.I., Butov O.V. // IEEE Proc. of International Conference Laser Optics. 2022. P. 1. https://doi.org/10.1109/ICLO54117.2022.9839786
  14. Shimizu T., Nakajima K., Shiraki K., Ieda K., Sankawa I. // Opt. Fiber Technol. 2008. V. 14. P. 10. https://doi.org/10.1016/j.yofte.2007.04.004
  15. Krakenes K., Blotekjaer K. // Opt. Lett. 1989. V. 14 (20). P. 1152. https://doi.org/10.1364/OL.14.001152
  16. Zhang G., Xi C., Liang Y., Zuo H. // IEEE Xplore Proc. of Cross Strait Quad-Regional Radio Science and Wireless Technology Conf. 2011. V. 2. P. 1598. https://doi.org/10.1109/CSQRWC.2011.6037279
  17. Teng F., Yi D., Hong X., Li X. // Opt. Express. 2021. V. 29 (9). P. 13696. https://doi.org/10.1364/OE.421569
  18. Ma P., Liu K., Sun Z., Jiang J., Wang S., Xu T., Xu Z., Liu T. // Opt. Lasers Eng. 2020. V. 129. P. 106060. https://doi.org/10.1016/j.optlaseng.2020.106060
  19. Kondrat M., Szustakowski M., Patka N., Ciurapinski W., Zyczkowski M. // Opto-Electron. Rev. 2007. V. 15 (3). P. 127. https://doi.org/10.2478/s11772-007-0012-x
  20. Mangmeng C., Ali M., Gilberto B. // Opt. Express. 2019. V. 27 (7). P. 9684. https://doi.org/10.1364/OE.27.009684
  21. Wang B., Yu X., Wu H., Zhang J., Meng X. // Opt. Commun. 2017. V. 382. P. 272. https://doi.org/10.1016/j.optcom.2016.07.022
  22. McAulay A., Wang J. // Proc. of Enabling Photonic Technologies for Aerospace Applications VI. 2004. V. 5435. https://doi.org/10.1117/12.542834

补充文件

附件文件
动作
1. JATS XML
2.

下载 (106KB)
3.

下载 (94KB)
4.

下载 (79KB)
5.

下载 (86KB)

版权所有 © Т.В. Гриценко, Н.В. Дьякова, А.А. Жирнов, К.В. Степанов, Р.И. Хан, К.И. Кошелев, А.Б. Пнев, В.Е. Карасик, 2023