Simulation of the Antineutrino Detector for the Second Neutrino Laboratory at the SM-3 Reactor

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An experiment aimed at searching for a sterile neutrino using a new detector of the second neutrino laboratory at the SM-3 reactor (Dimitrovgrad, Russia) has been simulated. This detector is a scintillation detector of reactor antineutrinos with a multisection structure and horizontal arrangement of sections. Distributions of counts from prompt and delayed signals, as well as the dependence of detector efficiency on the selected thresholds, have been obtained by simulation. The antineutrino flux has been simulated with an allowance for the dimensions of the reactor core and its spatial location with respect to the detector. This simulation has been used as a basis to calculate the effect that should be obtained by measurements for the specified parameters of oscillations and energy resolution of the detector.

作者简介

A. Fomin

Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute

Email: fomin_ak@pnpi.nrcki.ru
Leningrad oblast, 188300, Gatchina, Russia

A. Serebrov

Petersburg Nuclear Physics Institute, named by B.P. Konstantinov of National Research Centre Kurchatov Institute

编辑信件的主要联系方式.
Email: fomin_ak@pnpi.nrcki.ru
Leningrad oblast, 188300, Gatchina, Russia

参考

  1. LSND Collaboration. Aguilar A. et al. // Phys. Rev. D. 2001. V. 64. P. 112007. https://doi.org/10.1103/PhysRevD.64.112007
  2. MiniBooNE Collaboration. Aguilar-Arevalo A.A. et al. // Phys. Rev. Letters. 2018. V. 121. P. 221801. https://doi.org/10.1103/PhysRevLett.121.221801
  3. Mention G., Fechner M., Lasserre Th., Mueller Th.A., Lhuillier D., Cribier M., Letourneau A. // Phys. Rev. D. 2011. V. 83. P. 073006. https://doi.org/10.1103/PhysRevD.83.073006
  4. GALLEX Collaboration. Hampel W. et al. // Phys. Letters B. 1998. V. 420. P. 114. https://doi.org/10.1016/S0370-2693(97)01562-1
  5. SAGE Collaboration. Abdurashitov J. et al. // Phys. Rev. C. 1999. V. 59. P. 2246. https://doi.org/10.1103/PhysRevC.59.2246
  6. BEST Collaboration. Barinov V.V. et al. // Phys. Rev. C. 2022. V. 105. P. 065502. https://doi.org/10.1103/PhysRevC.105.065502
  7. Serebrov A.P., Samoilov R.M., Ivochkin V.G., Fomin A.K., Zinoviev V.G., Neustroev P.V., Golovtsov V.L., Volkov S.S., Chernyj A.V., Zherebtsov O.M., Chaikovskii M.E., Petelin A.L., Izhutov A.L., Tuzov A.A., Sazontov S.A. et al. // Phys. Rev. D. 2021. V. 104. P. 032003. https://doi.org/10.1103/PhysRevD.104.032003
  8. Neutrino-4 Collaboration. Samoilov R.M. et al. // LXXI International conference “NUCLEUS–2021. Nuclear physics and elementary particle physics. Nuclear physics technologiesˮ. St.Petersburg, September 20−25, 2021. https://indico.cern.ch/event/1012633/contributions/ 4480300/attachments/2315193/3940949/Samoilov_ neutrino-4_nucleus21.pdf
  9. Alekseev I., Belov V., Brudanin V., Danilov M., Egorov V., Filosofov D., Fomina M., Hons Z., Kazartsev S., Kobyakin A., Kuznetsov A., Machikhiliyan I., Medvedev D., Nesterov V., Olshevsky A. et al. // Phys. Lett. B. 2018. V. 787. P. 56. https://doi.org/10.1016/j.physletb.2018.10.038
  10. NEOS Collaboration. Ko Y.J. et al. // Phys. Rev. Lett. 2017. V. 118. P. 121802. https://doi.org/10.1103/PhysRevLett.118.121802
  11. PROSPECT Collaboration. Andriamirado M. et al. // Phys. Rev. D. 2021. V. 103. P. 032001. https://doi.org/10.1103/PhysRevD.103.032001
  12. STEREO Collaboration. Almazán H. et al. // Phys. Rev. D. 2020. V. 102. P. 052002. https://doi.org/10.1103/PhysRevD.102.052002

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (101KB)
4.

下载 (112KB)
5.

下载 (1MB)
6.

下载 (92KB)
7.

下载 (1MB)
8.

下载 (1MB)

版权所有 © А.К. Фомин, А.П. Серебров, 2023