Towards a semi-empirical analysis of exchange interactions in metalorganic frameworks with open d-shell ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The MagAîxTic program package based on the theory of effective Hamiltonian for crystal field and designed to estimate parameters of effective exchange between magnetic moments localized in the d-shells is augmented by the smaller ferromagnetic contributions to those parameters. The updated package is tested on the example of the three-nuclear basic acetates of iron(III) and chromium(III) of the composition μ3-OM3(CH3COO)6, as well as of their mixed analogs. It is shown that the developed/upgraded package is capable to reproduce both the orders of magnitude of the exchange parameters in the range of dozens cm-1 and their trends upon transition from one metal to another.

Full Text

Restricted Access

About the authors

A. L. Tchougréeff

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: tchougreeff@phyche.ac.ru
Russian Federation, Moscow, 119071

References

  1. Li J.R., Kuppler R.J., Zhou H.C. // Chem. Soc. Rev. 2009. V. 38. P. 1477.
  2. Liu J., Chen L., Cui H. et al. // Ibid. 2014. V. 43. P. 6011.
  3. Zhou H.-C.J., Kitagawa S. // Ibid. 2014. V. 43. P. 5415.
  4. Fischer R., Kaskel S., Kitagawa S. // Microporous and Mesoporous Materials. 2015. V. 216. P. 1.
  5. Li H., Wang K., Sun Y. et al. // Materials Today. 2018. V. 21. P. 108.
  6. Jiao L., Wang Y., Jiang H.L., Xu Q. // Adv. Mater. 2018. V. 30.
  7. Safaei M., Foroughi M.M., Ebrahimpoor N. et al. // TrAC – Trends in Anal. Chem. 2019. V. 118. P. 401.
  8. Coronado E., Espallargas G.M. // Chem. Soc. Rev. 2013. V. 42. P. 1525.
  9. Берсукер И.Б. Электронное строение и свойства координационных соединений: Введение в теорию. 3-е изд., перераб. и доп. Л.: Химия, Лен. отд., 1986.
  10. Navarro J.A.R., Barea E., Rodríguez-Diéguez A. et al. // J. of the Amer. Chem. Soc. 2008. V. 130. P. 3978.
  11. Mínguez Espallargas G. and Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
  12. Horcajada P., Surblé S., Serre C. et al. // Chem. Commun. 2007. P. 2820–2822.
  13. Momma K., Izumi F. // J. of App. Crystallogr. 2011. V. 44. P. 1272.
  14. Sciortino L., Alessi A., Messina F. et al. // The J. of Phys. Chem. C. 2015. V. 119. P. 7826–7830.
  15. Koch W., Holthausen M. A Chemist’s Guide to Density Functional Theory, v. 2. Wiley-VCH, Weinheim, 2002.
  16. Chung Y., Camp J., Haranczyk M. et al. // Chem. of Mater. 2014. V. 26. P. 6185.
  17. Chung Y.G., Gómez-Gualdrón D.A., Li P. et al. // Sci. Adv. 2016. V. 2.
  18. Gómez-Gualdrón D., Colón Y., Zhang X. et al. // En. Envir. Sci. 2016. V. 9. P. 3279.
  19. Colón Y., Gómez-Gualdrón D., Snurr R. // Growth Des. 2017. V. 17. P. 5801.
  20. Colón Y., Snurr R. // Chem. Soc. Rev. 2014. P. 5735.
  21. First E.L., Floudas C.A. // Microporous and Mesoporous Materials. 2013. V. 165. P. 32.
  22. Gounaris C., Wei J., Floudas C. et al. // AIChE J. 2009. V. 56. P. 611.
  23. Glover J., Besley E. // Faraday Discussions. 2021. V. 231. P. 235.
  24. Burkert U., Allinger N.L. Molecular mechanics. Washington: ACS, 1982.
  25. Leach A. Molecular Modelling: Principles and Applications, 2. Prentice Hall, Harlow, 2001.
  26. Frenkel D. Understanding molecular simulation: from algorithms to applications, 2007.
  27. Rappé A., Goddard III W. // J. Phys. Chem. 1991. V. 95. P. 3358.
  28. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. P. 15.
  29. Gonze X. // Comput. Phys. Commun. 2009. V. 180. P. 2582.
  30. Giannozzi P., Baroni S., Bonini N. et al. // J. of Phys.: Condens. Matter. 2009. V. 21. P. 395502.
  31. Schwarz K., Blaha P. // Comput. Mater. Sci. 2003. V. 28. P. 259.
  32. Hutter J., Iannuzzi M., Schiffmann F., Vandevondele J. // WIREs Comput. Mol. Sci. 2014. V. 4. P. 15.
  33. Nazarian D., Camp J.S., Chung Y.G. et al. // Chem. of Mater. 2016. V. 29. P. 2521.
  34. Ruiz E., Cano J., Alvarez S., Alemany P. // J. of Comput. Chem. 1999. V. 20. P. 1391.
  35. Ruiz E., Llunell M., Alemany P. // J. Sol. State. Chem. 2003. V. 176. P. 400.
  36. Ruiz E. In: Principles and Applications of Density Functional Theory in Inorganic Chemistry II / Ed. by N. Kaltsoyannis, J. McGrady. Springer-Verlag, 2004. V. 113 of Structure and Bonding, p. 71–102.
  37. Mavrandonakis A., Vogiatzis K.D., Boese A.D. et al. // Inorg. Chem. 2015. V. 54. P. 8251.
  38. Blake A.B., Yavari A., Hatfield W.E., Sethulekshmi C.N. // J. of the Chem. Soc. Dalton Transactions. 1985. P. 2509.
  39. Plekhanov E., Tchougr´eeff A., and Dronskowski R. // Comp. Phys. Comm. 2019. P. 107079.
  40. Plekhanov E., Tchougréeff A. // Comp. Mat. Sci. 2021. V. 188. P. 110140.
  41. Tchougréeff A., Plekhanov E., Dronskowski R. // J. Comp. Chem. 2021. V. 42. P. 1498.
  42. Epifanovsky E., Gilbert A.T.B., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A.F., Coons M.P., Dempwolff A.L. et al. // The J. of Chem. Phys. 2021. V. 155.
  43. Lee H., Lee H., Ahn S., Kim J. // ACS Omega. 2022. V. 7. P. 21145.
  44. Zhang M., Wang W., Chen Y. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 2211.
  45. Anderson P. // Sol. St. Phys. 1963. V. 14. P. 99.
  46. Soudackov A.V., Tchougreeff A.L., Misurkin I.A. // Theor. Chim. Acta. 1992. V. 83. P. 389.
  47. Tchougréeff A.L., Soudackov A.V., van Leusen J. et al. // Int. J. of Quant. Chem. 2016. V. 116. P. 282.
  48. Tchougréeff A.L., Soudackov A.V. // Russ. J. of Phys. Chem. A. 2014. V. 88. P. 1904.
  49. Popov I., Plekhanov E., Tchougréeff A., Besley E. // Mol. Phys. 2023. V. 121. e2106905.
  50. Popov I., Raenko D., Tchougréeff A., Besley E. // J. of Phys. Chem. C. 2023. V. 127. P. 21749.
  51. Tchougreeff A.L., Dronskowski R. // J. of Phys. Chem. A. 2013. V. 117. P. 7980.
  52. Goodenough J. Magnetism and the Chemical Bond. Interscience-Wiley, New York, 1963.
  53. Вонсовский С.В. Магнетизм. М.: Наука, 1984.
  54. Tchougréeff A. Effective Hamiltonian Crystal Field for Magnetic Interactions in Polynuclear Transition Metal Complexes. Sequential Derivation and Exemplary Numerical Estimates. 2013. URL https://arxiv.org/abs/1301.1036
  55. Löwdin P.-O. // J. of Math. Phys. 1962. V. 3. P. 969.
  56. Weihe H., Güdel H.U., Toftlund H. // Inorg. Chem. 2000. V. 39. P. 1351.
  57. Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
  58. Kasuya T. // Progress of Theor. Phys. 1956. V. 16. P. 45.
  59. Yosida K. // Phys. Rev. 1957. V. 106. P. 893.
  60. Van Vleck J.H. // Rev. of Mod. Phys. 1962. V. 34. P. 681.
  61. Long G.J., Robinson W.T., Tappmeyer W.P, Bridges D.L. // J. Chem. Soc., Dalton Trans. 1973. P. 573–579.
  62. Pople J.A., Beveridge D.L. Approximate Molecular Orbital Theory. McGraw-Hill Book, New York, 1970.
  63. Sinitsky A.V., Darhovskii M.B., Tchougreeff A.L., Misurkin I.A. // Int. J. of Quant. Chem. 2002. V. 88. P. 370.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the [m3-OM3(CH3COO)6(H2O)3]+ ion. The figure was prepared using the VESTA 3 program [13].

Download (319KB)
3. Fig. 2. Structure of the 1,3,5-benzene tricarbonate trianion – BTC – linker in the MIL-100 class MOF. The figure was prepared using the VESTA 3 program [13].

Download (201KB)
4. Fig. 3. Mutual orientation of magnetic moments localized in the d-shells of transition metal ions in potentially frustrated geometry. The figure was prepared using the VESTA 3 program [13].

Download (296KB)

Copyright (c) 2025 Russian Academy of Sciences