Gradient-free Federated Learning Methods with l1 and l2-randomization for Non-smooth Convex Stochastic Optimization Problems
- Autores: Alashqar B.A.1, Gasnikov A.V.2,3,4, Dvinskikh D.M.5, Lobanov A.V.1,6,7
-
Afiliações:
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Moscow Institute of Physics and Technology
- Institute for Information Transmission Problems of the RAS (Kharkevich Institute)
- Caucasian Mathematical Center of the Adyghe State University
- National Research University Higher School of Economics, Moscow, Russia
- ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia
- Moscow Aviation Institute, Moscow, Russia
- Edição: Volume 63, Nº 9 (2023)
- Páginas: 1458-1512
- Seção: Optimal control
- URL: https://freezetech.ru/0044-4669/article/view/664981
- DOI: https://doi.org/10.31857/S0044466923090028
- EDN: https://elibrary.ru/MLJEUH
- ID: 664981
Citar