Causes of brain aging and age-related changes in cognitive functions and the diversity of object models for studying these causes
- Авторлар: Umriukhin P.E.1,2, Shabalin N.Y.1, Mikheeva E.N.1, Veiko N.N.2, Kostyuk S.V.2
-
Мекемелер:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Research Centre for Medical Genetics (RCMG)
- Шығарылым: Том 56, № 3 (2025)
- Беттер: 80-96
- Бөлім: Articles
- URL: https://freezetech.ru/0301-1798/article/view/693398
- DOI: https://doi.org/10.7868/S3034611825030051
- ID: 693398
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
P. Umriukhin
I.M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics (RCMG)
Email: pavelum@mail.ru
Moscow, 119048 Russia; Moscow, 125993 Russia
N. Shabalin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: nsdominik@mail.ru
Moscow, 119048 Russia
E. Mikheeva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: kefir2018@mail.ru
Moscow, 119048 Russia
N. Veiko
Research Centre for Medical Genetics (RCMG)
Email: satelit32006@yandex.ru
Moscow, 125993 Russia
S. Kostyuk
Research Centre for Medical Genetics (RCMG)
Email: svet-vk@yandex.ru
Moscow, 125993 Russia
Әдебиет тізімі
- Величковский Б.М., Боринская С.А., Варта- нов А.В. др. Нейрокогнитивные особенности носителей аллеля ε4 гена аполипопротеина Е (APOE) // Теоретическая и экспериментальная психология. 2009. Т. 2. № 4. С. 25–37.
- Мошетова Л.К., Абрамова О.И., Туркина К.И. и др. От клеточного старения до возрастной макулярной дегенерации: роль теломер // РМЖ. Клиническая офтальмология. 2020. Т. 20. № 3. С. 148–151. https://doi.org/10.32364/2311-7729-2020-20-3-148-151
- Павлов К.И., Мухин В.Н., Клименко В.М., Анисимов В.Н. Система теломера-теломераза и психические процессы при старении, в норме и патологии (обзор литературы) // Успехи геронтологии. 2017. Т. 30. № 1. С. 17–26.
- Разумникова О.М. Закономерности старения мозга и способы активации его компенсаторных ресурсов // Успехи физиол. наук. 2015. Т. 46. № 2. С. 3–16.
- Третьякова В.Д. Возрастные изменения в мозге и факторы влияющие на них // Бюллетень науки и практики. 2022. V. 8. № https://doi.org/10.33619/2414 2948/80/20
- Третьякова В.Д., Пульцина К.И. Старение мозга: ключевые теории и нейрофизиологические инсайты // Клиническая и специальная психология. 2024. Т. 13. № 4. С. 5–28. doi: 10.17759/cpse.2024130401
- Чердак М.А. Механизмы нейрокогнитивной адаптации при старении // Проблемы геронауки. 2023. № 2. С. 94–101. https://doi.org/10.37586/2949-4745-2-2023-94-101
- Широкова И.В. Исторические аспекты становления понятия «Исполнительные функции». Обзор иностранных источников // Комплексные исследования детства. 2022. Т. 4. № 4. С. 333–336. https://orcid.org/0000-0003-1556-5584
- Amano H., Chaudhury A., Rodriguez-Agu- ayo C. et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent dise- ase // Cell metabolism. 2019. V. 29. № 6. P. 1274–1290. e9. https://doi.org/10.1016/j.cmet.2019.03.001
- Andrews M.G., Subramanian L., Kriegstein A.R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex // Elife. 2020. V. 9. P. e58737. https://doi.org/10.7554/eLife.58737
- Anthony M., Lin F. A systematic review for functional neuroimaging studies of cognitive reserve across the cognitive aging spectrum //Archives of Clinical Neuropsychology. 2018. V. 33. № 8. P. 937–948. https://doi.org/10.1093/arclin/acx125
- Arce Rentería M., Vonk J.M., Felix G. et al. Illiteracy, dementia risk, and cognitive trajectories among older adults with low education // Neurology. 2019. V. 93. № 24. P. e2247–e2256. https://doi.org/10.1212/WNL.0000000000008587
- Baker D., Childs B., Durik M. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan // Nature. 2016. V. 530. № 7589. P. 184–189. https://doi.org/10.1038/nature16932
- Baker D., Wijshake T., Tchkonia T. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders // Nature. 2011. V. 479. № 7372. P. 232–236. https://doi.org/10.1038/nature10600
- Bektas A., Schurman S.H., Sen R., Ferrucci L. Aging, inflammation and the environment // Experimental gerontology. 2018. V. 105. P. 10–18. https://doi.org/10.1016/j.exger.2017.12.015
- Berchtold N.C., Coleman P.D., Cribbs D.H. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease // Neurobiology of aging. 2013. V. 34. № 6. P. 1653–1661. https://doi.org/10.1016/j.neurobiolaging.2012.11.024
- Birch J., Gil J. Senescence and the SASP: Many therapeutic avenues // Genes & development. 2020. V. 34. № 23–24. P. 1565–1576. https://doi.org/10.1101/gad.343129.120
- Budni J., Bellettini-Santos T., Mina F. et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease // Aging and disease. 2015. V. 6. № 5. P. 331. https://doi.org/10.14336/AD.2015.0825
- Cabeza R., Albert M., Belleville S. et al. Cognitive neuroscience of healthy aging: Maintenance, reserve, and compensation // Nature Reviews. Neuroscience. 2018. V. 19. № 11. P. 701. https://doi.org/10.1038/s41583-018-0068-2
- Campbell K.L., Lustig C., Hasher L. Aging and inhibition: Introduction to the special issue // Psychology and Aging. 2020. V. 35. № 5. P. 605. https://doi.org/10.1037/pag0000564
- Castro-Pérez E., Emilio Soto-Soto E., Marizabeth Pérez-Carambot M. et al. Identification and characterization of the V (D) J recombination activating gene 1 in long-term memory of context fear conditioning // Neural Plasticity. 2016. V. 2016. 1752176 https://doi.org/10.1155/2016/1752176
- Cherbuin N., Kim S., Anstey K.J. Dementia risk estimates associated with measures of depression: A systematic review and meta-analysis // BMJ Open. 2015. V. 5. № 12. P. e008853. https://doi.org/10.1136/bmjopen-2015-008853
- Cohen-Manheim I., Doniger G.M., Sinnreich R. et al. Increased attrition of leukocyte telomere length in young adults is associated with poorer cognitive function in midlife // European journal of epidemiology. 2016. V. 31. P. 147–157. https://doi.org/10.1007/s10654-015-0051-4
- Crowe S.L., Movsesyan V.A., Jorgensen T.J., Kondratyev A. Rapid phosphorylation of histone H2A. X following ionotropic glutamate receptor activation // European Journal of Neuroscience. 2006. V. 23. № 9. P. 2351–2361. https://doi.org/10.1111/j.1460-9568.2006.04768.x
- Daniele S., Giacomelli C., Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management // Biochemical pharmacology. 2018. V. 158. P. 207–216. https://doi.org/10.1016/j.bcp.2018.10.030
- de Jager P.L., Srivastava G., Lunnon K. et al. Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci // Nature neuroscience. 2014. V. 17. № 9. P. 1156–1163. https://doi.org/10.1038/nn.3786
- De Lucia C., Murphy T., Steves C.J. et al. Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: Cellular and epidemiological evidence // Communications Biology. 2020. V. 3. № 1. P. 157. https://doi.org/10.1038/s42003-020-0844-1
- Emrani S., Arain H.A., DeMarshall C., Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review //Alzheimer's research & therapy. 2020. V. 12. № 1. P. 141. https://doi.org/10.1186/s13195-020-00712-4
- Ferguson H.J., Brunsdon V.E.A., Bradford E.E.F. The developmental trajectories of executive function from adolescence to old age // Scientific reports. 2021. V. 11. № 1. P. 1382. https://doi.org/10.1038/s41598-020-80866-1
- Fischer M.E., Cruickshanks K.J., Schubert C.R. et al. Age-related sensory impairments and risk of cognitive impairment // Journal of the American Geriatrics Society. 2016. Т. 64. № 10. P. 1981–1987. https://doi.org/10.1111/jgs.14308
- Gaspar-Silva F., Trigo D., Magalhaes J. Ageing in the brain: Mechanisms and rejuvenating strategies // Cellular and Molecular Life Sciences. 2023. V. 80. № 7. P. 1–21. https://doi.org/10.1007/s00018-023-04832-6
- Geerligs L., Saliasi E., Maurits N.M. et al. Brain mechanisms underlying the effects of aging on different aspects of selective attention // NeuroImage. 2014. V. 91. P. 52–62. https://doi.org/10.1016/j.neuroimage.2014.01.029
- Gollihue J.L., Norris C.M. Astrocyte mitochon-dria: Central players and potential therapeutic targets for neurodegenerative diseases and inju- ry // Ageing research reviews. 2020. V. 59. P. 101039. https://doi.org/10.1016/j.arr.2020.101039
- Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments // Signal Transduction and Targeted Therapy. 2022. V. 7. № 1. P. 391. https://doi.org/10.1038/s41392-022-01251-0
- Han B., Chen H., Yao Y. et al. Genetic and non-genetic factors associated with the phenotype of exceptional longevity & normal cognition // Scientific Reports. 2020. V. 10. № 1. P. 19140. https://doi.org/10.1038/s41598-020-75446-2
- Han R., Liang J., Zhou B. Glucose metabolic dysfunction in neurodegenerative diseases — new mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5887. https://doi.org/10.3390/ijms22115887
- Hardcastle C., O’Shea A., Kraft J.N. et al. Contributions of hippocampal volume to cognition in healthy older adults // Frontiers in aging neuroscience. 2020. V. 12. P. 593833. https://doi.org/10.3389/fnagi.2020.593833
- Hartshorne J.K., Germine L.T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span // Psychological science. 2015. V. 26. № 4. P. 433–443. https://doi.org/10.1177/0956797614567339
- Hou Y., Dan X., Babbar M. et al. Ageing as a risk factor for neurodegenerative disease // Nature Reviews Neurology. 2019. V. 15. № 10. P. 565–581. https://doi.org/10.1038/s41582-019-0244-7
- Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases // Nature medicine. 2010. V. 16. № 11. P. 1210–1214. https://doi.org/10.1038/nm.2224
- Kalpouzos G., Rizzuto D., Keller L. et al. Telomerase gene (hTERT) and survival: results from two Swedish cohorts of older adults // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2016. V. 71. № 2. P. 188–195. https://doi.org/10.1093/gerona/glu222
- Kase Y., Shimazaki T., Okano H. Current understanding of adult neurogenesis in the mammalian brain: How does adult neurogenesis decrease with age? // Inflammation and regeneration. 2020. V. 40. P. 1–6. https://doi.org/10.1186/s41232-020-00122-x
- Kepchia D., Huang L., Dargusch R. et al. Diverse proteins aggregate in mild cognitive impairment and Alzheimer’s disease brain // Alzheimer's research & therapy. 2020. V. 12. № 1. P. 1–20. https://doi.org/10.1186/s13195-020-00641-2
- Kirova A.M., Bays R.B., Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease // BioMed research international. 2015. V. 2015. № 1. P. 748212. https://doi.org/10.1155/2015/748212
- Konopka A., Atkin J.D. The role of DNA damage in neural plasticity in physiology and neurodegeneration // Frontiers in Cellular Neuroscience. 2022. V. 16. P. 836885. https://doi.org/10.3389/fncel.2022.836885
- Leong R.L.F., Lo J.C., Sim S.K.Y. et al. Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort // Neuroimage. 2017. V. 147. P. 852–860. https://doi.org/10.1016/j.neuroimage.2016.10.016
- Li H., Hirano S., Furukawa S. et al. The relationship between the striatal dopaminergic neuronal and cognitive function with aging // Frontiers in aging neuroscience. 2020. V. 12. P. 41. https://doi.org/10.3389/fnagi.2020.00041
- Liguori I., Russo G., Curcio F. et al. Oxidative stress, aging, and diseases // Clinical interventions in aging. 2018. P. 757–772. https://doi.org/10.2147/CIA.S158513
- López-Otín C., Blasco M.A., Partridge L., Serra- no M. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- Lunnon K., Smith R., Hannon E. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease // Nature neuroscience. 2014. V. 17. № 9. P. 1164–1170. https://doi.org/10.1038/nn.3782
- Ma A., Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response // Cell Cycle. 2018. V. 17. № 1. P. 73–79. https://doi.org/10.1080/15384101.2017.1403681
- Ma S.L., Lau E.S.S., Suen E.W.C. et al. Telomere length and cognitive function in southern Chinese community-dwelling male elders // Age and ageing. 2013. V. 42. № 4. P. 450–455. https://doi.org/10.1093/ageing/aft036
- Maharani A., Pendleton N., Leroi I. Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing // The American Journal of Geriatric Psychiatry. 2019. V. 27. № 12. P. 1348–1356. https://doi.org/10.1016/j.jagp.2019.07.010
- McGrattan A.M., McGuinness B., McKinley M.C. et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease // Current nutrition reports. 2019. V. 8. P. 53–65. https://doi.org/10.1007/s13668-019-0271-4
- McKinnon P.J. Topoisomerases and the regulation of neural function // Nature Reviews Neuroscience. 2016. V. 17. № 11. P. 673–679. https://doi.org/10.1038/nrn.2016.101
- Möller C., Hafkemeijer A., Pijnenburg Y.A.L. et al. Different patterns of cortical gray matter loss over time in behavioral variant frontotemporal dementia and Alzheimer's disease // Neurobiology of aging. 2016. V. 38. P. 21–31. https://doi.org/10.1016/j.neurobiolaging.2015.10.020
- Murman D.L. The impact of age on cognition // Seminars in hearing. Thieme Medical Publishers. 2015. V. 36. № 03. P. 111–121. https://doi.org/10.1055/s-0035-1555115
- Negredo P.N., Yeo R.W., Brunet A. Aging and rejuvenation of neural stem cells and their niches // Cell stem cell. 2020. V. 27. № 2. P. 202–223. https://doi.org/10.1016/j.stem.2020.07.002
- Nettiksimmons J., Ayonayon H., Harris T. et al. Development and validation of risk index for cognitive decline using blood-derived markers // Neurology. 2015. V. 84. № 7. P. 696–702. https://doi.org/10.1212/WNL.0000000000001263
- Oosterhuis E.J., Slade K., May P.J.C. et al. Toward an understanding of healthy cognitive aging: The importance of lifestyle in cognitive reserve and the scaffolding theory of aging and cognition // The Journals of Gerontology: Series B. 2023. V. 78. № 5. P. 777–788. https://doi.org/10.1093/geronb/gbac197
- Park D.C., Festini S.B. Theories of memory and aging: A look at the past and a glimpse of the future // Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2017. V. 72. № 1. P. 82–90. https://doi.org/10.1093/geronb/gbw066
- Pettigrew C., Soldan A. Defining cognitive reserve and implications for cognitive aging // Current neurology and neuroscience reports. 2019. V. 19. P. 1–12. https://doi.org/10.1007/s11910-019-0917-z
- Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease // Frontiers in aging neuroscience. 2019. V. 11. P. 30. https://doi.org/10.3389/fnagi.2019.00030
- Polidori M.C. Embracing complexity of (brain) aging // FEBS letters. 2024. V. 598. № 17. P. 2067–2073. https://doi.org/10.1002/1873-3468.14941
- Porokhovnik L.N., Veiko N.N., Ershova E.S., Kostyuk S.V. The role of human satellite III (1q12) copy number variation in the adaptive response during aging, stress, and pathology: a pendulum model // Genes. 2021. V. 12. № 10. P. 1524. https://doi.org/10.3390/genes12101524
- Réus G.Z., Abaleira H.M., Michels M. et al. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015. V. 772. P. 30–37. https://doi.org/10.1016/j.mrfmmm.2014.12.005
- Reuter-Lorenz P.A., Park D.C. Cognitive aging and the life course: A new look at the scaffolding theory // Current Opinion in Psychology. 2023. P. 101781. https://doi.org/10.1016/j.copsyc.2023.101781
- Rossiello F., Jurk D., Passos J.F. et al. Telomere dysfunction in ageing and age-related diseases // Nature cell biology. 2022. V. 24. № 2. P. 135–147. https://doi.org/10.1038/s41556-022-00842-x
- Ruthruff E., Lien M.C. Aging and attention // Encyclopedia of geropsychology. 2016. P. 1–7. https://doi.org/10.1007/978-981-287-080-3_227-1
- Sakata K., Duke S.M. Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus // Neuroscience. 2014. V. 260. P. 265–275. https://doi.org/10.1016/j.neuroscience.2013.12.013
- Sakata K., Overacre A.E. Promoter IV-BDNF deficiency disturbs cholinergic gene expression of CHRNA 5, CHRM 2, and CHRM 5: Effects of drug and environmental treatments // Journal of neurochemistry. 2017. V. 143. № 1. P. 49–64. https://doi.org/10.1111/jnc.14129
- Salthouse T. A. Selective review of cognitive aging // Journal of the International neuropsychological Society. 2010. V. 16. № 5. P. 754–760. https://doi.org/10.1017/S1355617710000706
- Salthouse T.A. The processing-speed theory of adult age differences in cognition // Psychological review. 1996. V. 103. № 3. P. 403. https://doi.org/10.1037/0033-295X.103.3.403
- Sanchez-Mut J.V., Heyn H., Vida E. et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns // Translational psychiatry. 2016. V. 6. № 1. P. e718–e718. https://doi.org/10.1038/tp.2015.214
- Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease // Cell. 2017. V. 168. № 6. P. 960–976. https://doi.org/10.1016/j.cell.2017.02.004
- Shay J.W., Wright W.E. Telomeres and telomerase: three decades of progress // Nature Reviews Genetics. 2019. V. 20. № 5. P. 299–309. https://doi.org/10.1038/s41576-019-0099-1
- Sikora E., Bielak-Zmijewska A., Dudkowska M. et al. Cellular senescence in brain aging // Frontiers in Aging Neuroscience. 2021. V. 13. P. 646924. https://doi.org/10.3389/fnagi.2021.646924
- Soto-Palma C., Niedernhofer L.J., Faulk C.D., Dong X. Epigenetics, DNA damage, and aging // The Journal of clinical investigation. 2022. V. 132. № 16. https://doi.org/10.1172/JCI158446.
- Stern Y., Barnes C.A., Grady C. et al. Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience // Neurobiology of aging. 2019. V. 83. P. 124–129. https://doi.org/10.1016/j.neurobiolaging.2019.03.022
- Stott R.T., Kritsky O., Tsai L.H. Profiling DNA break sites and transcriptional changes in response to contextual fear learning // PLoS One. 2021. V. 16. № 7. P. e0249691. https://doi.org/10.1371/journal.pone.0249691
- Swerdlow R.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease // International review of neurobiology. 2020. V. 154. P. 207–233. https://doi.org/10.1016/bs.irn.2020.01.008
- Trigo D., Nadais A., Carvalho A. et al. Mitochon-dria dysfunction and impaired response to oxidative stress promotes proteostasis disruption in aged human cells // Mitochondrion. 2023. V. 69. P. 1–9. https://doi.org/10.1016/j.mito.2022.10.002
- Tripp A., Oh H., Guilloux J. P. et al. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder // American Journal of Psychiatry. 2012. V. 169. № 11. P. 1194–1202. https://doi.org/10.1176/appi.ajp.2012.12020248
- Uyeda A., Onishi K., Hirayama T. et al. Suppres-sion of DNA double-strand break formation by DNA polymerase β in active DNA demethylation is required for development of hippocampal pyramidal neurons // Journal of Neuroscience. 2020. V. 40. № 47. P. 9012–9027. https://doi.org/10.1523/JNEUROSCI.0319-20.2020
- Veiko N.N., Ershova E.S., Veiko R.V., Umriukhin P. E. et al. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people // Frontiers in genetics. 2022. V. 13. P. 967448. https://doi.org/10.3389/fgene.2022.967448
- Verhaeghen P. Aging and executive control: Reports of a demise greatly exaggerated // Current Directions in Psychological Science. 2011. V. 20. № 3. P. 174–180. https://doi.org/10.1177/0963721411408772
- Verkhratsky A., Zorec R. Neuroglia in cognitive reserve // Molecular Psychiatry. 2024. P. 1–6. https://doi.org/10.1038/s41380-024-02644-z
- Wang Y., Du Y., Li J., Qiu C. Lifespan intellec- tual factors, genetic susceptibility, and cogni-tive phenotypes in aging: Implications for interventions // Frontiers in Aging Neuroscience. 2019. V. 11. P. 129. https://doi.org/10.3389/fnagi.2019.00129
- Welch G., Tsai L.H. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease // EMBO reports. 2022. V. 23. № 6. P. e54217. https://doi.org/10.15252/embr.202154217
- Welty S., Teng Y., Liang Z. et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons // Journal of Biological Chemistry. 2018. V. 293. № 4. P. 1353–1362. https://doi.org/10.1074/jbc.M117.808402
- Yu H., Su Y., Shin J. et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair // Nature neuroscience. 2015. V. 18. № 6. P. 836–843. https://doi.org/10.1038/nn.4008
- Zanto T.P., Gazzaley A. Aging of the frontal lobe // Handbook of clinical neurology. 2019. V. 163. P. 369–389. https://doi.org/10.1016/B978-0-12-804281-6.00020-3
- Zhang W., Chen Y., Yang X. et al. Functional haplotypes of the hTERT gene, leukocyte telomere length shortening, and the risk of peripheral arterial disease // PLoS One. 2012. V. 7. № 10. P. e47029 https://doi.org/10.1371/journal.pone.004702
Қосымша файлдар
