Some characteristics of three strains of the Black Sea algal viruses and their impact on planktonic microalgae

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Three strains of algal viruses (TvV-SM2, IgV-SS1, EhV-SS2) were isolated from the coastal waters of the Black Sea in 2022–2023. The first strain caused lysis of cells of the green algaeTetraselmis viridisandTetraselmis striata, the second affected cells of the prymnesiophyteIsochrysis galbana, and the third lysed the coccolithophoreEmiliania huxleyi. No other hosts of the pathogens were detected during the study of possible contact of the isolated viruses with indicator cultures of 32species of marine microalgae. Viral particles of all three strains had the shape of a regular convex icosahedron, and their diameter ranged from 48 to 174 nm. They were found to have a second membrane – a supercapsid. The titer of TvV-SM2 was 1.3 × 108 virions/ml, IgV-SS1 and EhV-SS2 – 3.1 × 104and 2.5 × 105virions/ml, respectively. The effect of different concentrations of copper ions on the activity of algal viruses was studied for the first time using TvV-SM2 as an example. Under the influence of the toxicant at a concentration of 100μg/l, complete suppression of the pathogen was revealed. When TvV-SM2 algal virus affectedT. viridis, the latent period of infection was 24 h, and the rate of algal cell lysis was equal to 2.59 day-1on average. Upon contact of EhV-SS2 algal virus withE. huxleyiculture, the latent period increased by 4.2 times, and the lysis rate decreased by almost an order of magnitude. During the latent period of infection, a 1.7–2-fold decrease in the efficiency of photosystem II was observed in both infected cultures. By the end of the experiments, an average of 10% of algal cells were not lysed.

Sobre autores

R. Sagadatova

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Email: lustelm@mail.ru
Sevastopol, Russia

L. Stelmakh

Kovalevsky Institute of Biology of the Southern Seas of Russian Academy of Sciences

Autor responsável pela correspondência
Email: lustelm@mail.ru
Sevastopol, Russia

Bibliografia

  1. Кораблина И.В., Барабашин Т.О., Геворкян Ж.В., Евсеева А.И. 2021. Динамика распределения тяжелых металлов в водной толще северо-восточной части Черного моря после 2000 г // Тр. ВНИРО. Т. 183. С. 96.
  2. Стельмах Л.В., Степанова О.А.2020. Влияние вирусной инфекции на функционирование и лизис черноморских микроводорослейTetraselmis viridis(Chlorophyta) и Phaeodactylum tricornutum(Bacillariophyta) // Биология внутр. вод.№ 4.С. 373. https://doi.org/10.31857/S0320965220030171
  3. Arsenieff L.,Simon N.,Rigaut-Jalabert F. et al.2019. First viruses infecting the marine diatomGuinardia delicatula // Front. Microbiol. V. 9. P. 3235. https://doi.org/10.3389/fmicb.2018.03235
  4. Baudoux A.C., Noordeloos A.A.M., Veldhuis M.J.W. et al.2006. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters // Aquat. Microb. Ecol. Т. 44. № 3. P. 207. https://doi.org/10.3354/ame044207
  5. Beckett S.J., Weitz J.S. 2018. The effect of strain level diversity on robust inference of virus-induced mortality of phytoplankton // Frontiers in Microbiology.Т. 9. P. 371936. https://doi.org/10.3389/fmicb.2018.01850
  6. Bettarel Y., Kan J., Wang K. et al.2005. Isolation and preliminary characterisation of a small nuclear inclusion virus infecting the diatomChaetoceroscf.gracilis // Aquat. Microb. Ecol.Т. 40. № 2. P. 103. https://doi.org/10.3354/ame040103
  7. Bidle K.D., Haramaty L., Barcelos e Ramos J., Falkowski P. 2007. Viral activation and recruitment of metacaspases in the unicellular coccolithophore,Emiliania huxleyi // Proceedings of the National Academy of Sciences.Т. 104. № 14. P. 6049. https://doi.org/10.1073/pnas.0701240104
  8. Bratbak G., Egge J.K., Heldal M.1993. Viral mortality of the marine algaEmiliania huxleyi(Haptophyceae) and termination of algal blooms //Mar. Ecol. Prog. Ser.V. 93. P. 39. https://doi.org/10.3354/meps093039
  9. Castberg T., Thyrhaug R., Larsen A. et al.2002. Isolation and characterization of a virus that infectsEmiliania huxleyi(Haptophyta) // J. Phycol. T. 38. № 4. P. 767. https://doi.org/10.1046/j.1529-8817.2002.02015.x
  10. Cottrell M.T., Suttle C.A.1995. Dynamics of lytic virus infecting the photosynthetic marine picoflagellateMicromonas pusilla // Limnol., Oceanogr.Т. 40. № 4. P. 730. https://doi.org/10.4319/lo.1995.40.4.0730
  11. Coy S.R., Gann E.R., Pound H.L. et al.2018. Viruses of eukaryotic algae: diversity, methods for detection, and future directions // Viruses. T. 10. № 9. P. 487. https://doi.org/10.3390/v10090487
  12. Danovaro R., Corinaldesi C., Dell’Anno A. et al.2011. Marine viruses and global climate change // FEMS Microbiol. Rev. T. 35. № 6. P. 993. https://doi.org/10.1111/j.1574-6976.2010.00258.x
  13. Evans C., Archer S.D., Jacquet S. et al.2003. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of aMicromonasspp. population // Aquat. Microb. Ecol. Т. 30. № 3. P. 207. https://doi.org/10.3354/ame030207
  14. Focardi A., Ostrowski M., Goossen K. et al.2020. Investigating the diversity of marine bacteriophage in contrasting water masses associated with the East Australian Current (EAC) System // Viruses. T. 12. № 3. P. 317. https://doi.org/10.3390/v12030317
  15. Frada M.J., Rosenwasser S., Ben-Dor S.et al.2017. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophoreEmiliania huxleyi // PLoS Pathogens. T. 13. № 12. P. e1006775. https://doi.org/10.1371/journal. ppat.1006775
  16. Garza D.R., Suttle C.A. 1998. The effect of cyanophages on the mortality ofSynechococcusspp. and selection for UV resistant viral communities // Microb. Ecol. V. 36. P. 281. https://doi.org/10.1007/s002489900115
  17. Guillard R.,Ryther J. 1962. Studies of marine planktonic diatoms: I.Cyclotella nanaHustedt, andDetonula сonfervacea(Cleve) Gran // J. Can. Microbiol. V. 8. P. 229. https://doi.org/10.1139/m62-029
  18. Horas E.L., Theodosiou L., Becks L. 2018. Why are algal viruses not always successful? // Viruses. T. 10. № 9. P. 474. https://doi.org/10.3390/v10090474
  19. Jacquet S., Heldal M., Iglesias-Rodriguez D. et al.2002. Flow cytometric analysis of anEmiliana huxleyibloom terminated by viral infection // Aquat. Microb. Ecol. V. 27. P. 111. https://doi.org/10.3354/ame027111
  20. Jacquet S., Miki T., Noble R.et al.2010. Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology // Advances in Oceanography and Limnology.V. 1. P. 97. https://doi.org/10.4081/aiol.2010.5297
  21. Jarvis B.,Wilrich C.,Wilrich P-T. 2010. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values // J. Appl. Microbiol. V. 109. P. 1660. https://doi.org/10.1111/j.1365-2672.2010.04792.x
  22. Kim J., Yoon S.H., Choi T.J.2015. Isolation and physiological characterization of a novel virus infectingStephanopyxis palmeriana(Bacillariophyta) // Algae. T. 30. № 2. P. 81. https://doi.org/10.4490/algae.2015.30.2.081
  23. Lawrence J.E., Brussaard C.P., Suttle C.A.2006. Virus-specific responses ofHeterosigma akashiwoto infection //Appl. and Environ. Microbiol.T. 72. № 12. P. 7829. https://doi.org/10.1128/AEM.01207-06
  24. Levy J.L., Angel B.M., Stauber J.L. et al.2008. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species // Aquat. Toxicol. V. 89. P. 82. https://doi.org/10.1016/j.aquatox.2008.06.003
  25. Nagasaki K., Tomaru Y., Tarutani K. et al. 2003. Growth characteristics and intraspecies host specificity of a large virus infecting the dinoflagellateHeterocapsa circularisquama // Appl. Environ. Microbiol. T. 69. № 5. P. 2580. https://doi.org/10.1128/AEM.69.5.2580-2586.2003
  26. Pagarete A., Grebert T., Stepanova O.et al.2015. Tsv-N1: a novel DNA algal virus that infectsTetraselmis striata // Viruses.V. 7. P. 3937. https://doi.org/10.3390/v7072806
  27. Pasulka A.L., Samo T.J., Landry M.L. 2015. Grazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem // J. Plankton Res.V. 37. P. 320. https://doi.org/10.1093/plankt/fbv011
  28. Schmoker C., Hernandez-Le.on S, Calbet A.2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions // J. Plankton Res. V. 35. P. 691. https://doi.org/10.1093/plankt/fbt023
  29. Schroeder D.C., Oke J., Malin G., Wilson W.H.2002. Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infectsEmiliana huxleyi // Archives of virology. T. 147. P. 1685. https://doi.org/10.1007/s00705-002-0841-3
  30. Short S.M. 2012. The ecology of viruses that infect eukaryotic algae // Environ. Microbiol. T. 14. № 9. P. 2253. https://doi.org/10.1111/j.1462-2920.2012.02706.x
  31. Slagter H.A., Gerringa L.J., Brussaard C.P. 2016. Phytoplankton virus production negatively affected by iron limitation // Frontiers in Mar. Sci. T. 3. P. 156. https://doi.org/10.3389/fmars.2016.00156
  32. Stelmakh L.V., Sagadatova R.R., Alatartseva O.S. 2024. The effect of viral infection on the Black Sea microalgaeTetraselmis viridis: the role of nutrients and copper ions // Functional Plant Biol. T. 51. № 2. https://doi.org/10.1071/FP23114
  33. Stepanova O.A. 2016. Black Sea algal viruses // Rus. J. Mar. Biol.T.42. P. 123. https://doi.org/10.1134/S1063074016020103
  34. Suttle C.A.2007. Marine viruses: major players in the global ecosystem // Nature Reviews Microbiol. V. 5. P. 801. https://doi.org/10.1038/nrmicro1750
  35. Thomas R., Jacquet S., Grimsley N., Moreau H.2012. Strategies and mechanisms of resistance to viruses in photosynthetic aquatic microorganisms // Advances in Oceanography and Limnology. T. 3. № 1. P. 1. https://doi.org/10.4081/AIOL.2012.5323
  36. Thyrhaug R., Larsen A., Thingstad T.F., Bratbak G. 2003. Stable coexistence in marine algal host-virus systems // Mar. Ecol. Progress Series. T. 254. P. 27. https://doi.org/10.3354/meps254027
  37. Tomaru Y., Tarutani K., Yamaguchi M.et al.2004. Quantitative and qualitative impacts of viral infection on aHeterosigma akashiwo(Raphidophyceae) bloom in Hiroshima Bay, Japan // Aquat. Microb. Ecol. V. 34. P. 227. https://doi.org/10.3354/ame034227
  38. Wilhelm S.W., Matteson A.R. 2008. Freshwater and marine virioplankton: a brief overview of commonalities and differences // Freshwater Biol. T. 53. № 6.Р. 1076. https://doi.org/10.1111/j.1365-2427.2008.01980.x
  39. Wommack K.E., Colwell R.R.2000. Virioplankton: viruses in aquatic ecosystems // Microbiol. and Mol. Biol. Reviews. V. 64. P. 69. https://doi.org/10.1128/MMBR.64.1.69-114.2000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025