IRRADIATION OF MESENCHYMAL STEM CELLS WITH AN ARGON PLASMA JET WITH VARIOUS OXYGEN ADMIXTURES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of experiments on the usage of a low-temperature plasma (LTP) jet to activate the nutrient liquid medium αMEM containing mesenchymal stem cells (MSCs) isolated from the bone marrow of Wistar rats are presented. The LTP jet had been created by an axially symmetric barrier discharge with a thin rod electrode located inside a quartz tube along its axis. The tube has been purged with argon at a flow rate of about 25 m/s at the tube output. The conditions under which LTP activation of the αMEM medium can accelerate MSC proliferation have been studied. It turns out that the final effect of the activated liquid medium on cells strongly depends on the purity of argon used to form the plasma jet. A small admixture of oxygen in argon at a level of 700 ppm leads to the formation of active oxygen species in the discharge and in the plasma jet, as well as ozone at a fairly high concentration. Ozone supplied by a jet into a liquid medium dissolves well in it and, as a strong oxidizer, can have a detrimental effect on stem cells. The results on the difference in the composition of active particles in plasma jets in pure argon and in argon with a small admixture of oxygen are presented, as well as the results of microbiological studies on the effect of two types of plasma jets on mesenchymal stem cells.

Sobre autores

A. Zakharchenko

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

P. Domnin

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

E. Kalinin

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

A. Grosheva

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

A. Petryakov

Troitsk Institute of Innovative and Thermonuclear Research

Email: petryakov@triniti.ru
Moscow, Troitsk, Russia

M. Medvedev

N.F.Gamaleya National Research Center for Epidemiology and Microbiology; Troitsk Institute of Innovative and Thermonuclear Research

Moscow, Russia; Moscow, Troitsk, Russia

E. Fefelova

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

K. Hajisharifi

Kharazmi University

Tehran, Iran

E. Heydari

Kharazmi University

Tehran, Iran

H. Mehdian

Kharazmi University

Tehran, Iran

E. Robert

Kharazmi University

Tehran, Iran

A. Stancampiano

Universite´ d’Orle´ans

Orle´ans, UMR 7344 GREMI, CNRS. France

S. Ermolaeva

N.F.Gamaleya National Research Center for Epidemiology and Microbiology

Moscow, Russia

Yu. Akishev

N.F.Gamaleya National Research Center for Epidemiology and Microbiology; Troitsk Institute of Innovative and Thermonuclear Research; National Research Nuclear University “Moscow Engineering Physics Institute” (MEPhI)

Moscow, Russia; Moscow, Troitsk, Russia; Moscow, Russia

Bibliografia

  1. Герасименко М.Ю., Зайцева Т.Н., Евстигнеева И.С. // Физическая и реабилитационная медицина, медицинская реабилитация. 2019. Т. 1. С. 79. https://doi.org/10.36425/2658-6843-2019-3-79-89
  2. Laroussi M. // Frontiers Phys. 2020. V. 8. P. 74. https://doi.org/10.3389/fphy.2020.00074
  3. Thomas J.E., Stapelmann K. // Plasma. 2024. V. 7. P. 386. https://doi.org/10.3390/plasma7020022
  4. von Woedtke Th., Bekeschus S., Weltmann K.-D., Wende K. // Plasma Processes Polymers. 2025. V. 22. P. e2400255. https://doi.org/10.1002/ppap.202400255
  5. Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., Van Dijk J., Zimmermann J.L. // New J. Phys. 2009. V. 11. P. 115012. https://doi.org/10.1088/1367-2630/11/11/115012
  6. van Gils C.A.J., Hofmann S., Boekema B.K.H.L., Brandenburg R., Bruggeman P.J. // J. Phys. D Appl. Phys. 2013. V. 46. P. 175203. https://doi.org/10.1088/0022-3727/46/17/175203
  7. Takamatsu T., Uehara K., Sasaki Y., Hidekazu M., Matsumura Y., Iwasawa A., Ito N., Kohno M., Azuma T., Okino A., Yousfi M. // PLoS One. 2015. V. 10(7). P. e0132381. https://doi.org/10.1371/journal.pone.0132381
  8. Setsuhara Y. // Arch. Biochem. Biophys. 2016. V. 605. P. 3. https://doi.org/10.1016/j.abb.2016.04.009
  9. Lu X.P., Reuter S., Laroussi M., Liu D.W. Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications. Boca Raton: CRC Press, 2019.
  10. von Woedtke T., Emmert S., Metelmann H.-R., Rupf S., Weltmann K.-D. // Phys. Plasmas. 2020. V. 27. P. 070601. https://doi.org/10.1063/5.0008093
  11. Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X., Ostrikov K., Hori M., Stapelmann K., Miller V. et al. // IEEE Trans. Radiat. Plasma Med. Sci. 2022. V. 6. P. 127. https://doi.org/10.1109/TRPMS.2021.3135118
  12. Keidar M., Weltmann K.-D., Macheret S. // J. Appl. Phys. 2021. V. 130. P. 080401. https://doi.org/10.1063/5.0065750
  13. Ermolaeva S.A., Varfolomeev A.F., Chernukha M.Y., Yurov D.S., Vasiliev M.M., Kaminskaya A.A., Moisenovich M.M., Romanova J.M., Murashev A.N., Selezneva I.I. et al. // J. Med. Microbiol. 2011. V. 60. P. 75. https://doi.org/10.1099/jmm.0.020263-0
  14. Heinlin J., Zimmermann J.L., Zeman F., Bunk W., Isbary G., Landthaler M., Maisch T., Monetti R., Morfill G., Shimizu T., Steinbauer J., Stolz W., Karrer S. // Wound Repair Regen. 2013. V. 21. P. 800. https://doi.org/10.1111/WRR.12078
  15. Scholtz V., Pazlarovа´ J., Souskovа´c H., Khuna J., Julа´k J. // Biotechnol Adv. 2015. V. 33. P. 1108. https://doi.org/10.1016/j.biotechadv.2015.01.002
  16. Arndt S., Unger P., Berneburg M., Bosserhoff A.K., Karrer S. // J. Dermatol. Sci. 2018. V. 89. P. 181. https://doi.org/10.1016/J.JDERMSCI.2017.11.008
  17. Weishaupt C., Emmert S. // Clin. Plasma Med. 2018. V. 10. P. 16. https://doi.org/10.1016/J.CPME.2018.03.002
  18. Chailakhyan R. K., Grosheva A. G., Gerasimov Y. V., Vorob’eva N. N., Ermolaeva S. A., Sysolyatina E. V., Petryakov A.V., Akishev Y.S. // Bull. Exp. Biol. Med. 2019. V. 167. P. 182. https://doi.org/10.1007/S10517-019-04486-0
  19. Biryukov M., Semenov D., Kryachkova N., Polyakova A., Patrakova E., Troitskaya O., Milakhina E., Poletaeva J., Gugin P., Ryabchikova E. et al. // Biomolecules. 2023. V. 13. P. 1672. https://doi.org/10.3390/biom13111672
  20. Keidar M. // Phys. Plasmas. 2018. V. 25. P. 083504. https://doi.org/10.1063/1.5034355
  21. Bogaerts A., Neyts E., Gijbels R., van der Mullen J. // Spectrochimica Acta Part B. 2002. V. 57. P. 609. https://doi.org/10.1016/S0584-8547(01)00406-2
  22. Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke Th., Brandenburg R., Von Dem Hagen T., Weltmann K.-D. // J. Phys. D: Appl. Phys. 2011. V. 44. P. 13002. https://doi.org/10.1088/0022-3727/44/1/013002
  23. Laroussi M., Lu X., Keidar M. // J. Appl. Phys. 2017. V. 122. P. 020901. https://doi.org/10.1063/1.4993710
  24. Fu W., Zhang Ch., Nie C., Li X, Yan Y. // Appl. Phys. Lett. 2019. V. 114. P. 254106. https://doi.org/10.1063/1.5108538
  25. Lai M., Song S., Oshin E., Potter L., Lai N., Jiang Ch. // J. Appl. Phys. 2022. V. 131. P. 173301. https://doi.org/10.1063/5.0083568
  26. Konchekov E.M., Gudkova V.V., Burmistrov D.E., Konkova A.S., Zimina M.A., Khatueva M.D., Polyakova V.A., Stepanenko A.A., Pavlik T.I., Borzosekov V.D. et al. // Biomolecules. 2024. V. 14. P. 181. https://doi.org/10.3390/ biom14020181
  27. Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. // Phys. Rep. 2016. V. 630. P. 1. https://doi.org/10.1016/j.physrep.2016.03.003
  28. Швейгерт И.В., Закревский Д.Э., Милахина Е.В., Гугин П.П„ Бирюков М.М., Патракова Е.А., Троицкая О.С., Коваль О.А. // Физика плазмы. 2023. Т. 49. С. 447. https://doi.org/10.31857/S0367292122601400
  29. Швейгерт И.В., Закревский Д.Э., Милахина Е.В., Александров А.Л., Бирюков М.М., Коваль О.А. // Физика плазмы. 2023. Т. 49. С. 1178. https://doi.org/10.31857/S0367292123601042
  30. Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. // Cell Tissue Kinet. 1970. V. 3. P. 393. https://doi.org/10.1111/J.1365-2184.1970.TB00347.X
  31. Bekeschus S., Kramer A., Schmidt A. // Molecules. 2021. V. 26. P. 5682. https://doi.org/10.3390/molecules26185682
  32. Barjasteh A., Kaushik N., Choi E.H., Kaushik N.K. // Int. J. Mol. Sci. 2023. V. 24. P. 16657. https://doi.org/10.3390/ijms242316657
  33. Ермаков А.М., Ермакова О.Н., Скавуляк А.Н., Маевский Е.И. // Биофизика. 2013. Т. 14. С. 802.
  34. Ермаков А.М., Знобищева А.В., Ермакова О.Н., Попов А.Л., Юнусова А.К. // Вестн. Новых Медицинских Технологий. 2016. Т. 23. С. 24.
  35. Akishev Y., Grushin M., Karalnik V., Kochetov I., Napartovich A., Trushkin N. // J. Phys.: Conf. Ser. 2010. V. 257. P. 012014. https://doi.org/10.1088/1742-6596/257/1/012014
  36. Akishev Y., Balakirev A., Grushin M., Karalnik V., Kochetov I., Napartovich A., Petryakov A., Trushkin N. // IEEE Transac. Plasma Sci. 2015. V. 43. P. 745. https://doi.org/10.1109/TPS.2014.2383618
  37. Lietz A.M., Kushner M.J. // J. Applied Phys. 2018. V. 124. P. 153303. https://doi.org/10.1063/1.5049430
  38. Van Gaens W., Iseni S., Schmidt-Bleker A., Weltmann K-D., Reuter S., Bogaerts A. // New J. Phys. 2015. V. 17. P. 033003. https://doi.org/10.1088/1367-2630/17/3/033003
  39. Klutev F.D., Schutz A., Michels A., Vadla C., Veza D., Horvatic V. // Analyst. 2016. V. 141. P. 5842. https://doi.org/10.1039/c6an01352j
  40. Эпштейн Л.А., Вольгрот И.Э. // Труды ЦАГИ. 1967. Вып. 1061. 33 с.
  41. http://www.specair-radiation.net//

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025