Investigation of electrophysical and mechanical parameters of piezoceramic materials for cartridge-type deformable mirrors
- Autores: Toporovsky V.V.1, Samarkin V.V.1, Kudryashov A.V.1, Galaktionov I.V.1, Malykhin A.Y.2, Panich А.A.2
-
Afiliações:
- Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
- Southern Federal University
- Edição: Volume 87, Nº 11 (2023)
- Páginas: 1637-1641
- Seção: Articles
- URL: https://freezetech.ru/0367-6765/article/view/654566
- DOI: https://doi.org/10.31857/S0367676523702836
- EDN: https://elibrary.ru/FGATNY
- ID: 654566
Citar
Texto integral



Resumo
We investigated electrophysical and mechanical parameters of the piezoceramic materials based on lead zirconate titanate. In correspondence with obtained data, modules with multilayer actuators with cross-section area of 4 × 4 mm, nominal displacement up to 4.3 µm and capacitance of the element with 12 nF for cartridge-type deformable mirror were produced.
Palavras-chave
Sobre autores
V. Toporovsky
Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: topor@activeoptics.ru
Russia, 119334, Moscow
V. Samarkin
Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Email: topor@activeoptics.ru
Russia, 119334, Moscow
A. Kudryashov
Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Email: topor@activeoptics.ru
Russia, 119334, Moscow
I. Galaktionov
Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Email: topor@activeoptics.ru
Russia, 119334, Moscow
A. Malykhin
Southern Federal University
Email: topor@activeoptics.ru
Russia, 344090, Rostov-on-Don
А. Panich
Southern Federal University
Email: topor@activeoptics.ru
Russia, 344090, Rostov-on-Don
Bibliografia
- Schmerbauch A.E.M., Vasquez-Beltran M.A., Vakis A.I. et al. // Appl. Optics. 2020. V. 59. P. 8077.
- Топоровский В.В., Скворцов А.А., Кудряшов А.В. и др. // Опт. журн. 2019. Т. 86. № 1. С. 40; Toporovskii V.V., Skvortsov A.A., Kudryashov A.V. et al. // J. Opt. Technol. 2019. V. 86. No. 1. P. 32.
- Bifano T. // Nature Photonics. 2011. V. 5. P. 21.
- Wernicke G., Krueger S., Gruber H. et al. // Proc. SPIE. 2001. V. 4596. P. 182.
- Toporovsky V., Kudryashov A., Skvortsov A. et al. // Photonics. 2022. V. 9. No. 5. Art. No. 321.
- Cornelissen S., Bifano T., Bierden P. // Proc. SPIE. 2012. V. 8253. Art. No. 825306.
- Notaros M., Dyer T., Raval M. et al. // Opt. Express. 2022. V. 30. P. 13790.
- Toporovskiy V., Kudryashov A., Samarkin V. et al. // Appl. Optics. 2019. V. 58. No. 22. P. 6019.
- Samarkin V., Alexandrov A., Galaktionov I. et al. // Appl. Sci. 2022. V. 12. No. 3. Art. No. 1144.
- Samarkin V., Sheldakova J., Toporovsky V. et al. // Appl. Optics. 2021. V. 60. P. 6719.
- Ahn K., Rhee H.-G., Yang H.-S., Kihm H. // Opt. Express. 2018. V. 26. P. 9724.
- Ahn K., Kihm H. // Opt. Lasers Eng. 2020. V. 126. Art. No. 105864.
- Немыкин В.В., Бурханов А.И., Панич А.Е. // Инж. вестн. Дона. 2021. № 12. С. 1276.
- Lushnikov S.G., Fedoseev A.I., Gvasaliya S.N. et al. // Phys. Rev. B. 2008. V. 77. Art. No. 104122.
- Viehland D., Jang S.J., Cross L.E. et al. // Phys. Rev. B. 1992. V. 46. Art. No. 8003.
- Смоленский Г.А., Юшин Н.К., Смирнов С.И. // ФТТ. 1985. Т. 27. С. 801.
- Bokov A. A., Ye Z.-G. // J. Mater. Sci. 2006. V. 41. P. 31.
- Ильин В.А. Металлизация диэлектриков. Ленинград: Машиностроение, 1977. 80 с.
- Isupov V.A. // Ferroelectrics. 1992. V. 131. P. 41.
Arquivos suplementares
