Topological origin of horizon temperature via the Chern–Gauss–Bonnet theorem

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

This paper establishes a connection between the Hawking temperature of spacetime horizons and global topological invariants, specifically the Euler characteristic of Wick-rotated Euclidean spacetimes. This is demonstrated for both de Sitter and Schwarzschild, where the compactification of the near-horizon geometry allows for a direct application of the Chern–Gauss–Bonnet theorem. For de Sitter, a simple argument connects the Gibbon–Hawking temperature of the Bunch–Davies state to the global thermal de Sitter temperature. This establishes that spacetime thermodynamics are a consequence of the geometrical structure of spacetime itself, therefore suggesting a deep connection between global topology and semi-classical analysis.

Авторлар туралы

J. Hughes

College of Engineering and Physical Sciences, Khalifa University

Email: jack.hughes.phys.14@gmail.com
Abu Dhabi, United Arab Emirates

F. Kusmartsev

College of Engineering and Physical Sciences, Khalifa University

Email: fedor.kusmartsev@ku.ac.ae
Abu Dhabi, United Arab Emirates

Әдебиет тізімі

  1. G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752 (1977); URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.15.2752.
  2. G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2738 (1977).
  3. G.E. Volovik, Symmetry 16, 763 (2024); Preprint 2312.02292[gr-qc].
  4. G.E. Volovik, arXiv:2504.05763 [gr-qc]; Preprint 2504.05763[gr-qc] (2025).
  5. S. Carlip, Int. J. Mod. Phys. D 23, 1430023 (2014); Preprint 1410.1486[gr-qc].
  6. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Rev. Mod. Phys. 93, 035002 (2021); URL https://arxiv.org/abs/2006.06872.
  7. D. Diakonov, arXiv:2504.01942 [hep-th]; Preprint 2504.01942[hep-th] (2025).
  8. B.S. Kay and R.M. Wald, Phys. Rep. 207, 49 (1991).
  9. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
  10. P.C. Martin and J.S. Schwinger, Phys. Rev. 115, 1342 (1959).
  11. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, UK (1982); ISBN 978-0521278584.
  12. T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010); Preprint 0911.5004.
  13. E.W. Mielke, Geometrodynamics of Gauge Fields: On the Geometry of Yang-Mills and Gravitational Gauge Theories, Mathematical Physics Studies, 2nd ed., Springer, Cham (2017); ISBN 978-3-319-29733-0.
  14. L.W. Tu, Differential Geometry: Connections, Curvature, and Characteristic Classes, Graduate Texts in Mathematics, Springer, Cham, Switzerland (2017), v. 275; ISBN 978-3-319-55082-4.
  15. J.C.M. Hughes and F.V. Kusmartsev, arXiv:2403.11527 [gr-qc]; Preprint 2403.11527[gr-qc] (2024).
  16. S.S. Chern, Ann. Math. 45, 747 (1944).
  17. S.S. Chern, Ann. Math. 46, 674 (1945).
  18. J.C.M. Hughes and F.V. Kusmartsev, arXiv:2505.05814 [gr-qc]; Preprint 2505.05814 (2025).
  19. G.E. Volovik, arXiv:2505.20194; Preprint 2505.20194 (2025).
  20. G.E. Volovik, JETP Lett. 90, 1 (2009); Preprint 0905.4639 [gr-qc].
  21. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge (2001); ISBN 9780521795401.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025