NMR evidence for a pseudogap in Pb-doped Bi:2201 single crystal

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

A 63Cu nuclear magnetic resonance (NMR) study of a Pb-doped Bi:2201 system, Bi1.6Pb0.4Sr2.05CuOy, is presented. The temperature dependencies of the NMR peak shift and the nuclear spin-lattice relaxation (SLR) rate reveal the pseudogap that opens near T* = 60 K, significantly above the superconducting critical temperature Tc ≃ 9 K at the NMR experiment field, 7 T oriented H ∥ c. The noticeable disparity between Tc and T* and the behavior of Cu SLR at T > T* imply the underdoped state of the studied system. A relatively weak effect of the magnetic field on the superconductivity evidenced from small (≈7 K) shift of the zero-field Tc0 = 16 ± 1 K under the applied 7 T field suggests high upper critical field, Hc2, unusual for compounds with as low Tc0.

Об авторах

O. M Vyaselev

Institute of Solid State Physics, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: vyasel@issp.ac.ru
Chernogolovka, Russia

Список литературы

  1. P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
  2. M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).
  3. W. W. Warren, R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F. Bell, and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).
  4. J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, J. Magn. Magn. Mater. 116, 336 (1992).
  5. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998).
  6. B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen, Chin. Phys. Lett. 39, 127401 (2022).
  7. C. Varma, Nature 468, 184 (2010).
  8. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
  9. K. Gorny, O. M. Vyaselev, J. A. Martindale, V. A. Nandor, C. H. Pennington, P. C. Hammel, W. L. Hults, J. L. Smith, P. L. Kuhns, A. P. Reyes, and W. G. Moulton, Phys. Rev. Lett. 82, 177 (1999).
  10. V. M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, and T. Claeson, Phys. Rev. Lett. 84, 5860 (2000).
  11. V. M. Krasnov, Phys. Rev. B 65, 140504 (2002).
  12. T. Jacobs, S. O. Katterwe, H. Motzkau, A. Rydh, Maljuk, T. Helm, C. Putzke, E. Kampert, M. V. Kartsovnik, and V. M. Krasnov, Phys. Rev. B 86, 214506 (2012).
  13. B. Fauqu´e, Y. Sidis, V. Hinkov, S. Pailh`es, C. T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett. 96, 197001 (2006).
  14. T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, and S. Shin, Phys. Rev. Lett. 98, 267004 (2007).
  15. M. Roslova, B. Bu¨chner, and A. Maljuk, Crystals 14, 270 (2024).
  16. G.-q. Zheng, P. L. Kuhns, A. P. Reyes, B. Liang, and C. T. Lin, Phys. Rev. Lett. 94, 047006 (2005).
  17. K. Ishida, K. Yoshida, T. Mito, Y. Tokunaga, Y. Kitaoka, K. Asayama, Y. Nakayama, J. Shimoyama, and K. Kishio, Phys. Rev. B 58, R5960 (1998).
  18. Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 179, 107 (1991).
  19. V. F. Gantmakher, G. A. Emelchenko, I. G. Naumenko, and G. E. Tsydynzhapov, JETP Lett. 72, 21 (2000).
  20. L. Ya. Vinnikov, A. G. Yukina, V. N. Zverev, D. Shovkun, and A. B. Kulakov, JETP 119, 514 (2014).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025