MATHEMATICAL MODELING OF SCALE-STRUCTURAL FAILURE AT PROGRAM CYCLIC LOADING OF METALS AND ALLOYS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relations for the failure probability at the micro-, meso-, and macrolevels and fatigue curves on defect levels at the program loading are proposed. The results of calculations for 0,25 % carbon steel at the loading of two or three blocks with different amplitudes and cycle numbers, steel 45 with different distributions of stress amplitudes and titanium alloy TC21 at symmetric loading, each block of which consists of two amplitudes of different numbers of cycles are discussed. For the materials considered, the model describes the evolution of brittle failure and the fatigue curve on fracture at symmetrical loading well. The scope of applicability of the model for program loadings is determined. It well describes the fatigue curve on fracture in a range of 𝑁𝑓 ⩾ 106 number of cycles and program loadings, in which the maximum stress values on average do not exceed the endurance by more than 30 %.

作者简介

E. Zavoychinskaya

Lomonosov Moscow State University

Email: eleonor.zavoychinskaya@math.msu.ru

N. Rautian

Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics

Email: nrautian@mail.ru

G. Lavrikov

Lomonosov Moscow State University

Email: georgii.lavrikov@math.msu.ru

参考

  1. Kawada, Y. Some experiments on the fatigue life under double and triple stresses / Y. Kawada, Y. Sekido, S. Saski // Bull. JSME. — 1960. — V. 3, № 10. — P. 275–281.
  2. Петрова, И.М. Накопление усталостных повреждений в области сверхвысоких долговечностей при нерегулярном нагружении / И.М. Петрова // Заводская лаборатория. Диагностика материалов. — 2012. — Т. 78, № 7. — C. 61–64.
  3. Very high cycle fatigue damage of TC21 titanium alloy under high/low two-step stress loading / B. Nie, S. Liu, Y. Wu [et al.] // Crystals. — 2023. — V. 13, № 1. — Art. 139.
  4. Seki, M. Estimation of the fatigue life under program load including the stresses lower than endurance limit / M. Seki, T. Tanaka, S. Denoh // Bull. JSME. — 1971. — V. 14, № 69. — P. 183–190.
  5. Fitzka, M. Constant and variable amplitude fatigue testing of aluminum alloy 2024-T351 with ultrasonic and servo-hydraulic equipment / M. Fitzka, H. Mayer // Int. J. Fatigue. — 2016. — V. 91, № 2. — P. 363–372.
  6. Okazaki, S. Effect of programed load history on fatigue life of high hardness steels / S. Okazaki, H. Nakamura, T. Tsunenari // Transactions of the Iron and Steel Institute of Japan. — 1979. — V. 19, № 8. — P. 509–515.
  7. Influence of the mean stress on the fatigue life of welded joints under variable amplitude loading / X. Liu, Y. Zhang, B. Wang, X. Sun // Int. J. Fatigue. — 2022. — V. 163.
  8. Савкин, А.Н. Прогнозирование долговечности стали при моделировании случайного внешнего воздействия / А.Н. Савкин, А.А. Седов, А.В. Андроник // Изв. ВолгГТУ. — 2015. — № 5 (160). — С. 113–118.
  9. Carvalho, A. Fatigue damage accumulation in aluminum 7050-T7451 alloy subjected to block programs loading under step-down sequence / A. Carvalho, J. Martins, H. Voorlwad // Procedia Engineering. — 2010. — V. 2, № 1. — P. 2037–2043.
  10. Srivatsavan, R. A cumulative damage rule based on successive reduction in fatigue limit / R. Srivatsavan, S. Subramanyan // ASME. J. Eng. Mater. Technol. — 1978. — V. 100, № 2. — P. 212–214.
  11. Study on fatigue strength of welded joints subject to intermittently whipping superimposed wave load / N. Osawa, L. De Gracia, K. Iijima [et al.] // Practical Design of Ships and Other Floating Structures. — 2021. — P. 453–472.
  12. Завойчинская, Э.Б. Общие закономерности и критерии разрушения твердых тел на разных масштабно-структурных уровнях при длительном нагружении / Э.Б. Завойчинская // Заводская лаборатория. Диагностика материалов. — 2022. — Т. 88, № 7. — С. 48–62.
  13. Zavoychinskaya, E.B. A stochastic theory of scale-structural fatigue and structure durability at operational loading / E.B. Zavoychinskaya // Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics / Eds. V.A. Sadovnichiy, M.Z. Zgurovsky. — Cham : Springer, 2021. — P. 71–89.
  14. Handbook on Experimental Mechanics / Ed. by A.S. Kobayashi. — Prentice-Hall : Society for Experimental Mechanics, 1987. — 1002 p.
  15. Прочность, ресурс, живучесть и безопасность машин / Н.А. Махутов, А.Ю. Албагачиев, С.И. Алексеева и др. ; отв. ред. Н.А. Махутов. — М. : Книжный дом “Либроком”, 2019. — 576 с.
  16. Ботвина, Л.Р. Разрушение. Кинетика, механизмы, общие закономерности / Л.Р. Ботвина. — М. : Наука, 2008. — 334 c.
  17. Murakami, Y. Metal Fatigue: Effect of Small Defects and Non-Metallic Inclusions / Y. Murakami. — Oxford : Elsevier, 2019. — 735 p.
  18. Czichos, H. Physics of Failure. Handbook of Technical Diagnostics. — Berlin ; Heidelberg : Springer, 2013. — 560 p.
  19. Ефимов, А.Г. Электромагнитные и магнитные методы неразрушающего контроля для контроля накопления поврежденности в конструкционных сталях и сплавах / А.Г. Ефимов // Заводская лаборатория. Диагностика материалов. — 2020. — Т. 86, № 8. — С. 49–57.
  20. Петровский, И.Г. Лекции по теории интегральных уравнений / И.Г. Петровский. — 5-е изд. — М. : Физматлит, 2009. — 136 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025