Abstract
Pulse studies of resistive switching in memristive planar heterocontacts based on Nd2–xCexCuO4–y epitaxial films are presented. The possibility of regulating the resistive metastable states of memristive planar systems based on such films according to certain pulse research protocols has been studied. Various metastable states were realized when changing external parameters: frequency, voltage of the electric field applied to heterocontacts. Dynamic effects have been investigated, and transition times from one metastable state to another have been determined. The change in electrodynamic properties during the action of a sinusoidal alternating electric field at frequencies of 10–3 Hz and in pulse mode with a pulse duration from 0.1 ms to 25 s was directly investigated by measuring the volt-ampere characteristics, recording oscillograms of current and voltage at the heterocontact and temperature dependences of resistance of metastable phases. The multilevel nature of the metastable resistive states of the studied systems and the ability to adjust the switching time characterize the plasticity of these devices and the prospects for their use as memory elements for neuromorphic applications in spike neural networks.