Skyrmions and Fluctuations of Spin Spirals in Strongly Correlated Fe1–хCoхSi with Noncentrosymmetric Cubic Structure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Strongly correlated Fe1–хCoxSi solid solutions with broken B20-type cubic structure are studied. Within the framework of the spin-fluctuation theory and in the model of the density of electronic states, arising from first-principles calculations within the framework of the generalized gradient approximation taking into account strong Coulomb correlations (GGA+U) temperature transitions are considered in strongly correlated Fe1–хCoxSi alloys (for example, x = 0.2, 0.3) with the Dzyaloshinskii–Moriya (DM) interaction. It is shown that in the compositions under consideration, a first-order magnetic phase transition, which is prolonged in temperature, occurs, during which the sign of the intermode coupling parameter in the Ginzburg–Landau functional changes. It is found that such a transition results in the formation of skyrmion A-phases in limited ranges of temperatures and external magnetic fields, beyond which the experimentally observed fluctuations of spin spirals are realized. The constructed (hТ)-diagrams (which indicate the range of long-range order, fluctuation and skyrmion phases) of Fe1–хCoxSi at x = 0.2 and 0.3 are consistent with the experiment.

Авторлар туралы

А. Povzner

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Хат алмасуға жауапты Автор.
Email: a.a.povzner@urfu.ru
Ресей, Yekaterinburg, 620002

А. Volkov

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Email: a.a.povzner@urfu.ru
Ресей, Yekaterinburg, 620002

Т. Nogovitsyna

Ural Federal University Named After the First President of Russia B. N. Yeltsin

Email: a.a.povzner@urfu.ru
Ресей, Yekaterinburg, 620002

Әдебиет тізімі

  1. Beille J., Voiron J., Towfiq F., Roth M., Zhang Z.Y. // J. Phys. F: Met.Phys. 1981. V. 11. P. 2153.
  2. Стишов С.М., Перова А.Е. // УФН. 2011. T. 181. № 11. C. 1157. https://www.doi.org/10.3367/UFNr.0181.201111b.1157
  3. Григорьев С.В., Дядькин В.А., Малеев С.В., Menzel D., Schoenes J., Lamago D., Москвин Е.В., Eckerlebe H. // ФТТ. 2010. T. 52. № 5. C. 852.
  4. Siegfried S.-A., Altynbaev E.V., Chubova N.M., Dyadkin V., Chernyshov D., Moskvin E.V., Menzel D., Heinemann A., Schreyer A., Grigoriev S.V. // Phys. Rev. B. 2015. V. 91. P. 184406. https://doi.org/10.1103/PhysRevB.91.184406
  5. Grigoriev S.V., Dyadkin V.A., Moskvin E.V., Lamago D., Wolf Th., Eckerlebe H., Maleyev S.V. // Phys. Rev. B. 2009. V. 79. P. 144417. https://www.doi.org/10.1103/PhysRevB.79.144417
  6. Дзялошинский И.Е. // ЖЭТФ. 1957. T. 32. № 6. C. 1548.
  7. Moriya T. // Phys. Rev. 1960. V. 120. P. 91.
  8. Bauer A., Garst M., Pfleiderer C. // Phys. Rev. B. 2016. V. 93. P. 235144. https://doi.org/10.1103/PhysRevB.93.235144
  9. Janoschek M., Garst M., Bauer A., Krautscheid P., Georgii R., Boni P., Pfleiderer C. // Phys. Rev. B. 2013. V. 87. P. 134407. https://www.doi.org/10.1103/PhysRevB.87.134407
  10. Münzer W., Neubauer A., Adams T., Mühlbauer S., Franz C., Jonietz F., Georgii R., Böni P., Pedersen B., Schmidt M., Rosch A., Pfleiderer C. // Phys. Rev. B. 2010. V. 72. P. 041203. http://dx.doi.org/10.1103/PhysRevB.81.041203
  11. Hubbard J. // Proc. Roy. Soc. A. 1963. V. 276. P. 238.
  12. Moriya T. // Spin Fluctuations in Itinerant Electron Magnetism. Berlin: Springer-Verlag, 1985.
  13. Hubbard J. // Phys. Rev. Lett. 1959. V. 3. P. 77.
  14. Brazovskii S.A., Dzyaloshinskii I.E., Kukharenko B.G. // Sov. Phys. JETP. 1976. V. 43. P. 1178.
  15. Brando M., Belitz D., Grosche F.M., Kirkpatrick T.R. // Rev. Mod. Phys. 2016. V. 88. P. 25006. https://doi.org/10.1103/RevModPhys.88.025006
  16. Hertz J.A., Klenin M.A. // Phys. Rev. B. 1974. V. 10. № 3. P. 1084. https://doi.org/10.1103/PhysRevB.10.1084
  17. Hertz J.A., Klenin M.A. // Physica B. 1977. V. 91. № 1. P. 49.
  18. Lindhard J. // Dan. Mat. Fys. Medd. 1954. V. 28. № 8. P. 1.
  19. Dzyaloshinskii I.E., Kondratenko P.S. // Sov. Phys. JETP. 1976. V. 43. № 5. P. 1036.
  20. Berry M.V. // Proc. Royal Soc. London A. 1984. V. 392. P. 45. https://doi.org/10.1098/rspa.1984.0023
  21. Wilde M.A., Dodenhöft M., Niedermayr A., Bauer A., Hirschmann M.M., Alpin K., Schnyder A.P., Pfleiderer C. // Nature. 2021. V. 594. P. 374. https://doi.org/10.1038/s41586-021-03543-x
  22. Vergniory M.G., Elcoro L., Felser C., Regnault N., Bernevig B.A., Wang Z. // Nature. 2019. V. 566. P. 480. https://doi.org/10.1038/s41586-019-0954-4
  23. Bannenberg L.J., Kakurai K., Qian F., Lelievre-Berna E., Dewhurst C.D., Onose Y., Endoh Y., Tokura Y., Pappas C. // Phys. Rev. B. 2016. V. 94. P. 104406. https://doi.org/10.1103/PhysRevB.94.104406

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024