Приложение некоторых методик с использованием синхротронного излучения к изучению перспективного композитного термоэлектрика SrTiO3–TiO2
- Авторы: Завьялов А.П.1,2, Любас Г.А.2, Шарафутдинов М.Р.2,3, Кривенцов В.В.4, Косьянов Д.Ю.1
-
Учреждения:
- НОЦ “Передовые керамические материалы”, Дальневосточный федеральный университет
- Институт химии твердого тела и механохимии СО РАН
- ЦКП “СКИФ”, ФИЦ Институт катализа им. Г.К. Борескова СО РАН
- ФИЦ Институт катализа им. Г.К. Борескова СО РАН
- Выпуск: № 6 (2023)
- Страницы: 21-26
- Раздел: Статьи
- URL: https://freezetech.ru/1028-0960/article/view/664546
- DOI: https://doi.org/10.31857/S1028096023060183
- EDN: https://elibrary.ru/DJWROA
- ID: 664546
Цитировать
Аннотация
Представлены результаты исследования бифазной керамики SrTiO3–TiO2, предложенной ранее в качестве перспективного термоэлектрика n-типа, полученные с применением методик с использованием синхротронного излучения в Центре коллективного пользования “Сибирский центр синхротронного и терагерцового излучения”. В частности, методом рентгеновского “кино” продемонстрировано, что реакция между порошковыми компонентами SrCO3 (стронтианитом) и TiO2 (анатазом) с получением SrTiO3 (таусонита) не является движущей силой при получении керамики методом искрового плазменного спекания реакционной смеси. Для двух спектральных методов – рентгеновской люминесценции и XANES-спектроскопии – проведено сравнение спектра бифазной керамики с модельным спектром, полученным на основе спектров монофазных керамик как образцов сравнения. Методом рентгеновской люминесценции выявлен сдвиг в высокоэнергетическую область и сужение спектра бифазной керамики, что может свидетельствовать о размерном квантовании (наличии двумерного электронного газа) в системе. В XANES-спектре бифазной керамики обнаружены изменения в области, в которой его форма может существенно зависеть от симметрии ближайшего окружения атомов Ti4+. Однако интерпретировать эти данные без численного моделирования затруднительно.
Об авторах
А. П. Завьялов
НОЦ “Передовые керамические материалы”, Дальневосточный федеральный университет; Институт химии твердого тела и механохимии СО РАН
Автор, ответственный за переписку.
Email: Zav_Alexey@list.ru
Россия, 690922, Владивосток; Россия, 630128, Новосибирск
Г. А. Любас
Институт химии твердого тела и механохимии СО РАН
Автор, ответственный за переписку.
Email: sciencenano@yandex.ru
Россия, 630128, Новосибирск
М. Р. Шарафутдинов
Институт химии твердого тела и механохимии СО РАН; ЦКП “СКИФ”, ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Автор, ответственный за переписку.
Email: Marat@solid.nsc.ru
Россия, 630128, Новосибирск; Россия, 630559, Новосибирск
В. В. Кривенцов
ФИЦ Институт катализа им. Г.К. Борескова СО РАН
Автор, ответственный за переписку.
Email: Kriven@mail.ru
Россия, 630090, Новосибирск
Д. Ю. Косьянов
НОЦ “Передовые керамические материалы”, Дальневосточный федеральный университет
Автор, ответственный за переписку.
Email: Kosianov.diu@dvfu.ru
Россия, 690922, Владивосток
Список литературы
- Snyder G.J., Toberer E.S. // Nat. Mater. 2008. V. 7. P. 105. https://doi.org/10.1038/nmat2090
- Tritt T.M., Subramanian M.A. // MRS Bull. 2006. V. 31. P. 188. https://doi.org/10.1557/mrs2006.44
- Snyder G.J., Christensen M., Nishibori E., Caillat T., Iversen B.B. // Nat. Mater. 2004. V. 3. P. 458. https://doi.org/10.1038/nmat1154
- Venkatasubramanian R., Siivola E., Colpitts T., O’Quinn B. // Nature. 2001. V. 413. P. 597. https://doi.org/10.1038/35098012
- Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogan T., Polychroniadis E.K., Kanatzidis M.G. // Science. 2004. V. 303. P. 818. https://doi.org/10.1126/science.1092963
- Zhao L.-D., Lo S.-H., Zhang Y., Sun H., Tan G., Uher C., Wolverton C., Dravid V.P., Kanatzidis M.G. // Nature. 2014. V. 508. P. 373. https://doi.org/10.1038/nature13184
- Zhao L.-D., Tan G., Hao S., He J., Pei Y., Chi H., Wang H., Gong S., Xu H., Dravid V.P., Uher C., Snyder G., Wolverton J.C., Kanatzidis M.G. // Science. 2016. V. 351. P. 141. https://doi.org/10.1126/science. aad3749
- Rhyee J.-S., Lee K.H., Lee S.M., Cho E., Kim S.I., Lee E., Kwon Y.S., Shim J.H., Kotliar G. // Nature. 2009. V. 459. P. 965. https://doi.org/10.1038/nature08088
- Chung D.-Y., Hogan T., Brazis P., Rocci-Lane M., Kannewurf C., Bastea M., Uher C., Kanatzidis M.G. // Science. 2000. V. 287. P. 1024. https://doi.org/10.1126/science.287.5455.1024
- Raj B., van de Voorde M., Mahajan Y. Nanotechnology for Energy Sustainability. Weinheim: Wiley-VCH, 2017. https://doi.org/10.1002/9783527696109
- Kim S.I., Lee K.H., Mun H.A., Kim H.S., Hwang S.W., Roh J.W., Yang D.J., Shin W.H., Li X.S., Lee Y.H., Snyder G.J., Kim S.W. // Science. 2015. V. 348. P. 109. https://doi.org/10.1126/science.aaa4166
- Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics: Basic Principles and New Materials Developments. Berlin, Heidelberg: Springer–Verlag, 2001. https://doi.org/10.1007/978-3-662-04569-5
- Zavjalov A., Tikhonov S., Kosyanov D. // Materials. 2019. V. 12. P. 2895. https://doi.org/10.3390/ma12182895
- Ohta H., Kim S., Mune Y., Mizoguchi T., Nomura K., Ohta S., Nomura T., Nakanishi Y., Ikuhara Y., Hirano M., Hosono H., Koumoto K. // Nat. Mater. 2007. V. 6. P. 129. https://doi.org/10.1038/nmat1821
- Zhang R., Wang C., Li J., Koumoto K. // J. Am. Ceram. Soc. 2010. V. 93. № 6. P. 1677. doi . 03619.xhttps://doi.org/10.1111/j.1551-2916.2010
- Safronova N.A., Kryzhanovska O.S., Dobrotvorska M.V., Balabanov A.E., Tolmachev A.V., Yavetskiy R.P., Parkhomenko S.V., Brodskii R.Ye., Baumer V.N., Kosyanov D.Yu., Shichalin O.O., Papynov E.K., Li J. // Ceram. Int. 2020. V. 46. P. 6537. https://doi.org/10.1016/j.ceramint.2019.11.137
- Zavjalov A.P., Shichalin O.O., Tikhonov S.A., Kosyanov D.Yu. // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1093. P. 012034. https://doi.org/10.1088/1757-899X/1093/1/012034
- Tikhonov S.A., Zavjalov A.P., Kosyanov D.Yu. // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1093. P. 012031. https://doi.org/10.1088/1757-899X/1093/1/012031
- Piminov P.A., Baranov G.N., Bogomyagkov A.V. et al. // Phys. Procedia. 2016. V. 84. P. 19. https://doi.org/10.1016/j.phpro.2016.11.005
- Ancharov A.I., Baryshev V.B., Chernov V.A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2005. V. 543. № 1. P. 1. https://doi.org/10.1016/j.nima.2005.01.021
- Evdokov O.V., Titov V.M., Tolochko B.P., Sharafutdinov M.R. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. № 1–2. P. 194. https://doi.org/10.1016/j.nima.2009.03.001
- Aulchenko V.M., Evdokov O.V., Kutovenko V.D., Pirogov B.Ya., Sharafutdinov M.R., Titov V.M., Tolochko B.P., Vasiljev A.V., Zhogin I.A., Zhulanov V.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 603. № 1–2. P. 76. https://doi.org/10.1016/j.nima.2008.12.164
- Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
- Klementiev K.V. VIPER. (Visual Processing in EXAFS Researches) for Windows. Users Manual and Tutorial with Comments on Analysis Methods in EXAFS. Version of manual 2.20. Version of program 11.00. Barcelona, Spain: 2012. 54 p. https://intranet.cells.es/Beamlines/CLAESS/software/VIPERmanual220.pdf.
- Klementiev K.V. XANES Dactyl scope. A Program for Quick and Rigorous XANES Analysis for Windows. Users Manual and Tutorial. Version of manual 1.10. Version of program 6.00. Barcelona, Spain: 2012. 23 p. https://intranet.cells.es/Beamlines/CLAESS/software/ XDmanual110.pdf.
- Lyubas G.A., Ledentsov N.N., Litvinov D., Gerthsen D., Soshnikov I.P., Ustinov V.M. // J. Exp. Theor. Phys. 2002. V. 75. P. 179. https://doi.org/10.1134/1.1475718
- Tsodikov M.V., Slivinskii E.V., Yushchenko V.V., Kitaev L.E., Kriventsov V.V., Kochubey D.I., Teleshev A.T. // Russ. Chem. Bull. 2000. V.49. № 12. P. 2003. https://doi.org/10.1023/A:1009567807897
- Kriventsov V.V., Kochubey D.I., Tsodikov M.V., Navio J. // Nucl. Instrum. Methods Phys. Res. A. 2001. V. 470. № 1–2. P. 331. https://doi.org/10.1016/S0168-9002(01)01068-3
- Kriventsov V.V., Kochubey D.I., Tsodikov M.V., Navio J.A., Restrepo G., Macias M. // Nucl. Instrum. Methods Phys. Res. A. 2001. V. 470. № 1–2. P. 347. https://doi.org/10.1016/S0168-9002(01)01072-5
- Trukhan N.N., Romannikov V.N., Shmakov A.N., Vanina M.P., Paukshtis E.A., Bukhtiyarov V.I., Kriventsov V.V., Danilov I.Y., Kholdeeva O.A. // Micropor. Mesopor. Mater. 2003. V. 59. № 2–3. P. 73. https://doi.org/10.1016/S1387-1811(03)00287-7
- Kholdeeva O.A., Mel’gunov M.S., Shmakov A.N., Trukhan N.N., Kriventsov V.V., Zaikovskii V.I., Malyshev M.E., Romannikov V.N. // Catal. Today. 2004. V. 91–92. P. 205. https://doi.org/10.1016/j.cattod.2004.03.034
Дополнительные файлы
