Specific Aspects of Design and Use of Instruments for Space EUV Experiments
- 作者: Kuzin S.V.1, Bogachev S.A.2, Kirichenko A.S.2, Pertsov A.A.1
-
隶属关系:
- Institute of Solar-Terrestrial Physics SB RAS
- Space Research Institute of Russian Academy of Science
- 期: 编号 12 (2023)
- 页面: 31-38
- 栏目: Articles
- URL: https://freezetech.ru/1028-0960/article/view/664698
- DOI: https://doi.org/10.31857/S1028096023120117
- EDN: https://elibrary.ru/AJQPMD
- ID: 664698
如何引用文章
详细
The specific aspects of design and operation of space instruments for recording radiation and images in the extreme ultraviolet (EUV) range of the spectrum are considered. The main factors affecting the reliability of EUV instruments are contamination temperature regime pressure drop acoustic pressure shocks vibration overloads at the launch stage weightlessness and radiation damage. These factors are often interconnected and operate in a complex manner. The analysis of the influence of these factors on the main characteristics of the instruments and the possibilities of its reduction is carried out.
作者简介
S. Kuzin
Institute of Solar-Terrestrial Physics SB RAS
编辑信件的主要联系方式.
Email: kuzin@iszf.irk.ru
Russia, 664033, Irkutsk
S. Bogachev
Space Research Institute of Russian Academy of Science
Email: kuzin@iszf.irk.ru
Russia, 117485 , Moscow
A. Kirichenko
Space Research Institute of Russian Academy of Science
Email: kuzin@iszf.irk.ru
Russia, 117485 , Moscow
A. Pertsov
Institute of Solar-Terrestrial Physics SB RAS
Email: kuzin@iszf.irk.ru
Russia, 664033, Irkutsk
参考
- Blake R.L., Chubb T.A., Friedman H., Unzicker A.E. // Astrophys. J. 1963. V. 137. P. 3. https://doi.org/10.1086/147479
- Mandelstam S.L. // Space Sci. Rev. 1965. V. 4. P. 587. https://doi.org/10.1007/BF00216272
- Tousey R., Bartoe J.-D.F., Brueckner G.E., Purcell J.D. // Appl. Optics. 1977. V. 16. P. 870. https://doi.org/10.1364/AO.16.000870
- Giacconi R., Reidy W.P., Vaiana G.S., van Speybroeck L.P., Zehnpfennig T.F. // Space Sci. Rev. 1969. V. 9. Iss. 1. P. 3. https://doi.org/10.1007/BF00187578
- Tsuneta S., Acton L., Bruner M., Lemen J., Brown W., Caravalho R., Catura R., Freeland S., Jurcevich B., Morrison M., Ogawara Y., Hirayama T., Owens J. // Sol. Phys. 1991. V. 136. Iss. 1. P. 37. https://doi.org/10.1007/BF00151694
- Walker A.B.C., Barbee T.W., Hoover R.B., Lindblom J.F. // Science. 1988. V. 241. Iss. 4874. P. 1781. https://doi.org/10.1126/science.241.4874.1781
- Delaboudinière J.-P., Artzner G.E., Brunaud J. et al. // Sol. Phys. 1995. V. 162. P. 291. https://doi.org/10.1007/BF00733432
- Kuzin S.V., Bogachev S.A., Zhitnik I.A., Pertsov A.A., Ignatiev A.P., Mitrofanov A.V., Slemzin V.A., Shestov S.V., Sukhodrev N.K., Bugaenko O.I. // Adv. Space Res. 2008.V. 43. Iss. 6. P. 1001. https://doi.org/10.1016/j.asr.2008.10.021
- Kuzin S.V., Zhitnik I.A., Shestov S.V. et al. // Sol. System Res. 2011. V. 45. Iss. 2. P. 162. https://doi.org/10.1134/S0038094611020110
- Lemen J.R., Title A.M., Akin D.J. et al. // Sol. Phys. 2012. V. 275. Iss. 1–2. P. 17. https://doi.org/10.1007/s11207-011-9776-8
- Mitra-Kraev U., Del Zanna G. // Astronomy Astrophys. 2019. V. 628. P. 134. https://doi.org/10.1051/0004-6361/201834856
- Li Z., Su Y., Veronig A.M., Kong Sh., Gan W., Chen W. // Astrophys. J. 2022. V. 930. Iss. 2. P. 147. https://doi.org/10.3847/1538-4357/ac651c
- Kirichenko A.S., Bogachev S.A. // Sol. Phys. 2017. V. 292. Iss. 9. P. 1. https://doi.org/10.1007/s11207-017-1146-8
- Kirichenko A.S., Bogachev S.A. // Astrophys. J. 2017. V. 840. Iss. 1. P. 45. https://doi.org/10.3847/1538-4357/aa6c2b
- Ulyanov A.S., Bogachev S.A., Reva A.A., Kirichenko A.S., Loboda I.P. // Astronomy Lett. 2019. V. 45. Iss. 4. P. 248. https://doi.org/10.1134/S1063773719040078
- Ulyanov A.S., Bogachev S.A., Loboda I.P., Reva A.A., Kirichenko A.S. // Sol. Phys. 2019. V. 294. Iss. 9. P. 1. https://doi.org/10.1007/s11207-019-1472-0
- Shimojo M., Kawate T., Okamoto T.J., Yokoyama T., Narukage N., Sakao T., Iwai K., Fleishman G.D., Shibata K. // Astrophys. J. Lett. 2020. V. 888. Iss. 2. P. L28. https://doi.org/10.3847/2041-8213/ab62a5
- Loboda I.P., Bogachev S.A. // Astronomy Astrophys. 2017. V. 597. P. A78. https://doi.org/10.1051/0004-6361/201527559
- Loboda I.P., Bogachev S.A. // Sol. Phys. 2015. V. 290. Iss. 7. P. 1963. https://doi.org/10.1007/s11207-015-0735-7
- Madjarska M.S. // Living Rev. Sol. Phys. 2019. V. 16. Iss. 1. P. 1. https://doi.org/10.1007/s41116-019-0018-8
- Reva A., Ulyanov A., Kirichenko A., Bogachev S., Kuzin S. // Sol. Phys. 2018. V. 293. Iss. 10. P. 1. https://doi.org/10.1007/s11207-018-1363-9
- Reva A., Kuzin S., Bogachev S., Shestov S. // Sol. Phys. 2012 V. 276. Iss. 1. P. 97. https://doi.org/10.1007/s11207-011-9883-6
- Shestov S.V., Kuzin S.V., Urnov A.M., Ul’Yanov A.S., Bogachev S.A. // Astronomy Lett. 2010. V. 36. Iss 1. P. 44. https://doi.org/10.1134/S1063773710010056
- Urnov A.M., Shestov S.V., Bogachev S.A., Goryaev F.F., Zhitnik I.A., Kuzin S.V. // Astronomy Lett. 2007. V. 33. Iss 6. P. 396. https://doi.org/10.1134/S1063773707060059
- Shestov S.V., Urnov A.M., Kuzin S.V., Zhitnik I.A., Bogachev S.A. // Astronomy Lett. 2009. V. 35. Iss. 1. P. 45. https://doi.org/10.1134/S106377370901006X
- Benton E.R., Benton E.V. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 184. P. 255. https://doi.org/10.1016/S0168-583X(01)00748-0
- Белоус А.И., Солодуха В.А., Шведов С.В. Космическая электроника. М.: Техносфера, 2015. 718 с.
补充文件
