Study of Structural Stability of Thin Films of CH3NH3PbI3 Hybrid Perovskite under Ambient Conditions
- 作者: Zelenyak T.Y.1, Doroshkevich A.S.1, Kriger V.V.1, Vershinina T.N.1, Tropin T.V.1, Avdeev M.V.1,2
-
隶属关系:
- Joint Institute for Nuclear Research
- State University Dubna
- 期: 编号 1 (2025)
- 页面: 17-24
- 栏目: Articles
- URL: https://freezetech.ru/1028-0960/article/view/686098
- DOI: https://doi.org/10.31857/S1028096025010038
- EDN: https://elibrary.ru/ABSUPH
- ID: 686098
如何引用文章
详细
Hybrid organic-inorganic perovskite materials are of current interest as promising light-harvesting materials for photovoltaics. However, the main problem of their industrial implementation is the stability in various temperature and humidity conditions. The change in the crystal structure of hybrid perovskite thin films under ambient conditions was studied using X-ray diffraction. In particular, during the degradation of films, the formation of a monohydrate as an intermediate phase was detected. Also, X-ray diffraction data indicated layer-by-layer degradation of the films.
作者简介
T. Zelenyak
Joint Institute for Nuclear Research
编辑信件的主要联系方式.
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980
A. Doroshkevich
Joint Institute for Nuclear Research
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980
V. Kriger
Joint Institute for Nuclear Research
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980
T. Vershinina
Joint Institute for Nuclear Research
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980
T. Tropin
Joint Institute for Nuclear Research
Email: tatyana.zelenyak@bk.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980
M. Avdeev
Joint Institute for Nuclear Research; State University Dubna
Email: avd@nf.jinr.ru
俄罗斯联邦, Dubna, Moscow Oblast, 141980; Dubna, Moscow Oblast, 141982
参考
- Park N.-G., Zhu K. // Nat. Rev. Mater. 2020. V. 5. P. 333. https://doi.org/10.1038/s41578-019-0176-2
- Niu G., Li W., Meng F., Wang L., Donga H., Qiuaet Y. // J. Mater. Chem. A. 2014. V. 2. P. 705. https://doi.org/10.1039/C3TA13606J
- Niu G., Guo X., Wang L. // J. Mater. Chem. A. 2015. V. 3. P. 8970. https://doi.org/10.1039/C4TA04994B
- Ali N., Rauf S., Kong W., Ali S, Wang X., Khesro A., Yang C.P., Zhu B., Wu H. // Renew. Sustain. Energy Rev. 2019. V. 109. P. 160. https://doi.org/10.1016/j.rser.2019.04.022
- Krishna B.G., Ghosh D.S., Tiwari S. // Sol. Energy 2021. V. 224. P. 1369. https://doi.org/10.1016/j.solener.2021.07.002
- Амасев Д.В., Козюхин С.А., Текшина Е.B., Казанский А.Г. // Учен. записки физ. фак-та Моск. ун-та 2018. № 3. C. 1830501.
- Al Mamun A., Ava T.T., Byun H.R., Jeong H.J., Jeong M.S., Nguyen L., Gausin C., Namkoong G. // Phys. Chem. Chem. Phys. 2017. V. 19. № 29. P. 19487. https://doi.org/10.1039/C7CP03106H
- Al Mamun A., Mohammed Y., Ava T.T., Namkoong G., Elmustafa A.A. // Mater. Lett. 2018. V. 229. P. 167. https://doi.org/10.1016/j.matlet.2018.06.126
- Messegee Z., Al Mamun, A., Ava T.T., Namkoong G., Abdel-Fattah T.M. // Mater. Lett. 2019. V. 236. P. 159. https://doi.org/10.1016/j.matlet.2018.10.064
- Im J.H., Kim H.S., Park N.-G. // Appl. Mater. 2014. V. 2. № 8. P. 081510. https://doi.org/10.1063/1.4891275
- Zelenyak T., KinevV., Rezepov P., Korolik O., Mazanik A., Tivanov M., Doroshkevich N., Lavysh A., Gevorgyan V., Tameev A., Vannikov A., Turchenko V., Gladyshev P. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 498. № 1. P. 012012. https://doi.org/10.1088/1757-899X/498/1/012012
- Cohen B.E., Gamliel S., Etgar L. // Appl. Mater. 2014. V. 2. P. 081502. https://doi.org/10.1063/1.4885548
- De Bastiani M., Innocenzo V.D., Stranks S.D., Snaith H.J., Petrozza A. // Appl. Mater. 2014. V. 2. P. 081509. https://doi.org/10.1063/1.4889845
- Torres-Martínez D.Y., Millán M., Aguilar B., Navarro O. // Physica B. 2020. V. 585. P. 412081. https://doi.org/10.1016/j.physb.2020.412081
- Xie J., Liu Y., Liu J., Lei L., Gao Q., Li J., Yang S. // J. Power Sources. 2015. V. 285. P. 349. https://doi.org/10.1016/j.jpowsour.2015.03.114
- Abdelmageed G., Jewell L., Hellier K., Seymour L. // Appl. Phys. Lett. 2016. V. 109. № 23. P. 233905. https://doi.org/10.1063/1.4967840
- Glaser T., Müller Ch., Sendner M. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 15. P. 2913. https://doi.org/10.1021/acs.jpclett.5b01309
- Li Q., Li J., Zhang S., Yi C., Xu Z. // High Performance Polymers. 2018. V. 30. № 7. P. 847. https://doi.org/10.1177/095400831773239
- Da Silva Filho J.M.C., Ermakov V.A., Marques F.C.M. // Sci. Rep. 2018. V. 8. № 1. P. 1. https://doi.org/10.1038/s41598-018-19746-8
- Panneerselvam V., Salammal S.T., Chinnakutti K.K., Manidurai P. // Mater. Lett. 2019. V. 241. P. 140. https://doi.org/10.1016/j.matlet.2019.01.069
- Mufti N., Laila I.K.R., Fuad A., Taufiq A., Sunaryono // Mater. Today: Proc. 2019. V. 17. P. 1627. https://doi.org/10.1016/j.matpr.2019.06.192
- Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9091. https://doi.org/10.1021/ic401215x
- Hiraishi J., Tani K., Tamura T. // J. Chem. Phys. 1979. V. 71. № 1. P. 554. https://doi.org/10.1063/1.438138
- Yi H., Zhu S., Zhao B., Jin Y., He Z., Chen B. // J. Cryst. Growth. 2007. V. 300. № 2. P. 448. https://doi.org/10.1016/j.jcrysgro.2006.10.226
- Del Angel-Olarte C., Moreno-García H., Palestino G. // Thin Solid Films. 2021. V. 717. P. 138438. https://doi.org/10.1016/j.tsf.2020.138438
- Poglitsch A., Weber D. // J. Chem. Phys. 1987. V. 87. P. 6373. https://doi.org/10.1063/1.453467
- Hao F., Stoumpos C.C., Liu Z., Liu Z., Chang R.P.H., Kanatzidis M.G. // J. Am. Chem. Soc. 2014. V. 136. P. 16411. https://doi.org/10.1021/ja509245x
- Christians J.A., Herrera M.P.A., Kamat P.V. // J. Am. Chem. Soc. 2015. V. 137. P. 1530. https://doi.org/10.1021/ja511132a
- Dhamaniya B.P., Chhillar P., Roose B., Dutta V., Pathak S.K. // ACS Appl. Mater. Int. 2019. V. 11. P. 22228. https://doi.org/10.1021/acsami.9b00831
- Li D., Bretschneider S.A., Bergmann V.W., Hermes I.M., Mars J., Klasen A., Lu H., Tremel W., Mezger M., Butt H.-J., Weber S.A.L., Berger R. // J. Phys. Chem. C. 2016. V. 120. P. 6363. https://doi.org/10.1021/acs.jpcc.6b00335
- Leguy A.M.A., Hu Y., Campoy-Quiles M., Alonso M.I., Weber O.J., Azarhoosh P., Van Schilfgaarde M., Weller M.T., Bein T., Nelson J., Docampo P., Barnes P.R.F. // Chem. Mater. 2015. V. 27. P. 3397. https://doi.org/10.1021/acs.chemmater.5b00660
- Imler G.H., Li X., Xu B., Dobereiner G.E., Dai H.-L., Rao Y., Wayland B.B. // Chem. Comm. 2015. V. 51. № 56. P. 11290. https://doi.org/10.1039/C5CC03741G
- Hea Y., Zhua S., Zhao B., Jin Y., He Z., Chen B. // J. Cryst. Growth 2007. V. 300. P. 448. https://doi.org/10.1016/j.jcrysgro.2006.10.226
- Fan Z., Xiao H., Wang Y., Zhao Z., Lin Z., Cheng H.-C., Lee S.-J., Wang G., Feng Z., Goddard III W.A., Huang Y., Duan X. // Joule 2017. V. 1. № 3. P. 548. https://doi.org/10.1016/j.joule.2017.08.005
- Masaki S., Masato K., Tetsuhiko M., Sugita T., Fujiseki T., Hara S., Kadowaki H., Murata D., Chikamatsu M., Fujiwara H. // J. Appl. Phys. 2016. V. 119. P. 115501. https://doi.org/10.1063/1.4943638
补充文件
