Study of SiO2 films obtained by PECVD and doped with Zn
- 作者: Privezentsev V.V.1, Firsov A.A.1, Kulikauskas V.S.2, Zatekin V.V.2, Kirilenko E.P.3, Goryachev A.V.3
-
隶属关系:
- National Research Centre “Kurchatov Institute” — Scientific Research Institute for System Analysis
- Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
- Institute of Nanotechnology of Microelectronics RAS
- 期: 编号 4 (2025)
- 页面: 70-74
- 栏目: Articles
- URL: https://freezetech.ru/1028-0960/article/view/689195
- DOI: https://doi.org/10.31857/S1028096025040106
- EDN: https://elibrary.ru/FCFSZP
- ID: 689195
如何引用文章
详细
The results of studying silicon oxide films obtained by plasma enhanced chemical vapor deposition on Si substrates are presented. They were implanted with 64Zn+ ions with an energy of 50 keV (dose 7 × 1016 cm–2) and then annealed in oxygen atmosphere at elevated temperatures. It has been found that after implantation, zinc is distributed in the SiO2 film according to the normal law with a maximum of about 40 nm. After implantation, zinc is in the silicon oxide film both in the metallic phase (closer to the film surface) and in the oxidized state (in the film depth). After annealing up to 800°C, the zinc profile shifts into the film depth; in this case, the zinc is in the film only in the oxidized state. At high temperatures (over 800°C), the zinc profile shifts toward the film surface.
全文:

作者简介
V. Privezentsev
National Research Centre “Kurchatov Institute” — Scientific Research Institute for System Analysis
编辑信件的主要联系方式.
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
A. Firsov
National Research Centre “Kurchatov Institute” — Scientific Research Institute for System Analysis
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
V. Kulikauskas
Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
V. Zatekin
Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
E. Kirilenko
Institute of Nanotechnology of Microelectronics RAS
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
A. Goryachev
Institute of Nanotechnology of Microelectronics RAS
Email: v.privezentsev@mail.ru
俄罗斯联邦, Moscow
参考
- Старостин В.В. Материалы и методы нанотехнологий. М.: БИНОМ, 2015. 434 с.
- Litton С.W., Collins T.C., Reynolds D.S. Zinc Oxide Material for Electronic and Optoelectronic Device Application. Chichester: Wiley, 2011.
- Neshataeva E., Kümmell T., Bacher G., Ebbers A. // Appl. Phys. Lett. 2009. V. 94. P. 091115. https://doi.org/10.1063/1.3093675
- Chu S., Olmedo M., Yang Zh. et al. // Appl. Phys. Lett. 2008. V. 93. P. 181106. https://doi.org/10.1063/1.3012579
- Smestad G.P., Gratzel M. // J. Chem. Educ. 1998. V. 75. P. 752. https: j.chem.wisc.edu.
- Li C., Yang Y., Sun X.W., Lei W., Zhang X.B., Wang B.P., Wang J.X., Tay B.K., Ye J.D., Lo G.Q., Kwong D.L. // Nanotechnology. 2007. V. 18. P. 135604. https://doi.org/10.1088/0957-4484/18/13/135604
- Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. // Adv. Mater. 2018. V. 30. 43. P. 1801187. https://doi.org/10.1002/adma.201801187
- Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., ohd Bakhori S.K., Hasan H., Mohamad D. // Nano-Micro Lett. 2015. V. 7. P. 219. https://doi.org/10.1007/s40820-015-0040-x
- Inbasekaran S., Senthil R., Ramamurthy G., Sastry T.P. // Intern. J. Innov. Res. Sci. Eng. Technol. 2014. V. 3. P. 8601. www.ijirset.com.
- Straumal B.B., Mazilkin A.A., Protasova S.G., Myatiev A.A., Straumal P.B., Schütz G., van Aken P.A., Goering E., Baretzky B. // Phys. Rev. B. 2009. V. 79. P. 205206. https://doi.org/10.1103/PhysRevB.79.205206
- Ilyas N., Li C., Wang J., Jiang X., Fu H., Liu F., Gu D., Jiang Y., Li W. // J. Phys. Chem. Lett. 2022. V. 13 (3). P. 884. https://doi.org/10.1021/acs.jpclett.1c03912
- Qin F., Zhang Y., Guo Z. et al. // Mater. Adv. 2024. V. 5. P. 4209. https://doi.org/10.1039/d3ma01142
- Okulich E.V., Okulich V.I., Tetelbaum D.I., Mikhaylov A.N. // Mater. Lett. 2022. V. 310. P. 131494. https://doi.org/10.1016/j.matlet.2021.131494
- Mehonic A., Gerard T., Kenyon A.J. // Appl. Phys. Lett. 2017. V. 111. P. 233502. https://doi.org/10.1063/1.5009069
- Chang K.C., Tsai T.M., Chang T.C., Wu H.H., Chen J.H., Syu Y.E., Chang G.W., Chu T.J., Liu G.R., Su Y.T., Chen M.C., Pan J.H., Chen J.Y., Tung C.W., Huang H.C., Tai Y.H., Gan D.S., Sze S.M. // IEEE Eelecron. Dev. Lett. 2013. V. 34 (9). P. 399. https://doi.org/10.1109/LED.2013.2241725
- Privezentsev V.V., Kulikauskas V.S., Zatekin V.V., Kiselev D.A., Voronova M.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2022. V. 16 (3). P. 402. https://doi.org/ 10.1134/S1027451022030314
- Hofmann S. Auger- and X-Ray Photoelectron Spectroscopy in Material Science. Berlin Heidelberg: Springer–Verlag, 2013.
- Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии / Ред. Бриггс Д., Сих М.П. М.: Мир, 1987. 600 с.
- Монахова Ю.Б., Муштакова С.П. // Журнал аналитической химии. 2012. Т. 67. Вып. 12. С. 1044.
- SIMNRA code. https://mam.home.ipp.mpg.de/
- Ziegler J.F., Biersack J.P. SRIM 2013 (http://www.srim.org).
补充文件
