Dating of the Sedimentary Cover Reflectors and Evaluation of the Sedimentation Rates in the Late Pliocene–Quaternary in the King Trough and Vicinity (The North Atlantic)
- Authors: Bogoliubskii V.A.1,2,3, Sokolov S.Y.1, Denisova A.P.1, Dobroliubova K.O.1
-
Affiliations:
- Geological Institute Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Geology
- The Earth Science Museum, Lomonosov Moscow State University
- Issue: Vol 522, No 2 (2025)
- Pages: 187-196
- Section: GEOLOGY
- Submitted: 15.10.2025
- Published: 15.06.2025
- URL: https://freezetech.ru/2686-7397/article/view/693292
- DOI: https://doi.org/10.31857/S2686739725060024
- ID: 693292
Cite item
Abstract
Based on the results of the 55th and 57th cruises of the R/V “Akademik Nikolai Strakhov”, seismoacoustic profiling data of the upper part of the sedimentary cover were obtained in the area of the King Trough mesostructural complex (eastern flank of the MAR). Reference reflectors were identified from the seismoacoustic sections and correlated with the DSDP 608 and IODP U1312 deep-sea drilling holes. The sections cover the entire Quaternary sediment record (glacial cycles) and part of the Upper Pliocene sediment record. As a result of the work, sedimentation rates within the different structures of the King Trough were calculated. During the last 1.5 Ma, sedimentation rates have been slightly different throughout the area from average sedimentation rates in the World Ocean, whereas earlier rates were several times higher than average ones. There is a period of sharply increased sedimentation rates (up to 180 m/My) at ca. 1.5 Ma, which may be related to abrupt climatic changes and ocean level fluctuations. Prior to the onset of the Mid-Pleistocene Transition at 1.5 Ma, a bottom current probably ran along the bottom of the western part of the King Trough, causing high sedimentation rates in the bottom of the trough. The current stopped after the onset of the climatic transition, which could be due to regional restructuring of the Atlantic Meridional Overturning Circulation. These conclusions are correlated with sedimentation rates and changes in ocean surface temperature based on data from IODP U1313.
About the authors
V. A. Bogoliubskii
Geological Institute Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Geology; The Earth Science Museum, Lomonosov Moscow State University
Email: bogolubskiyv@yandex.ru
Moscow, Russia; Moscow, Russia; Moscow, Russia
S. Y. Sokolov
Geological Institute Russian Academy of SciencesMoscow, Russia
A. P. Denisova
Geological Institute Russian Academy of SciencesMoscow, Russia
K. O. Dobroliubova
Geological Institute Russian Academy of SciencesMoscow, Russia
References
- Straume E.O., Gaina C., Medvedev S., Hochmuth K., Gohl K., Whittaker J.M., Fattah R.A., Doornenbal J.C., Hopper J.R. GlobSed: Updated total sediment thickness in the world’s oceans // Geochemistry, Geophysics, Geosystems. 2019. V. 20. P. 1756–1772. https://doi.org/10.1029/2018GC008115
- Баширова Л.Д., Дорохова Е.В., Сивков В.В., Андерсен Н., Кулешова Л.А., Матуль А.Г. Палеотечения в районе разлома Чарли-Гиббс в позднечетвертичное время // Океанология. 2017. Т. 57. № 3. С. 491–502.
- DSDP Leg 94 Report. Hole 611. 1983. P. 471–590.
- Liu J., Fang N., Wang F., Yang F., Ding X. Features of ice-rafted debris (IRD) at IODP site U1312 and their palaeoenvironmental implications during the last 2.6 Myr // Palaeogeography, Palaeoclimatology, Palaeoecology. 2018. V. 511. P. 364–378. https://doi.org/10.1016/j.palaeo.2018.09.002
- Toucanne S., Soulet G., Riveiros N.V., Boswell S.M., Dennielou B., Waelbroeck C., Bayon G., Mojtahid M., Bosq M., Sabine M., Zaragosi S., Bourillet J.-F., Mer- cier H. The North Atlantic Glacial Eastern Boundary Current as a Key Driver for Ice-Sheet–AMOC Interactions and Climate Instability // Paleoceanography and Paleoclimatology. 2021. V. 36. e2020PA004068. https://doi.org/10.1029/2020PA004068
- Morozov E.G., Demidov A.N., Tarakanov R.Y., Zenk W. Abyssal Channels in the Atlantic Ocean. Dordrecht; Heidelberg; London; New York: Springer, 2010. 288 p. https://doi.org/10.1007/978-90-481-9358-5
- Glazkova T., Hernández-Molina F. J., Dorokhova E., Mena A., Roque C., Rodríguez-Tovar F. J., Krechik V., Kuleshova L., Llave E. Sedimentary processes in the Discovery Gap (Central–NE Atlantic): An example of a deep marine gateway // Deep Sea Research Part I: Oceanographic Research Papers. 2022. V. 180. 103681. https://doi.org/10.1016/j.dsr.2021.103681
- Bader R.G., Gerard R.D., Benson W.E. et al. SITE26 // Init. Rep. DSDP. V. 4. Washington: U.S. Government Printing Office, 1970. P. 77–91. URL: https://www.ngdc.noaa.gov/mgg/trk/trackline/glomar_challenger/dsdp94gc/
- DSDP Leg 94 Report. Hole 608. 1983. P. 149‒246.
- IODP Expedition 306 Preliminary Report. Hole U1312. 2005. P. 19–22. https://doi.org/10.2204/IODP.PR.306.2005
- Ruddiman W.F., Kidd R.B., Thomas E. et al. Initial Reports DSDP 1987. V. 94. P. 1261. https://doi.org/10.2973/dsdp.proc.94.1987.
- Сколотнев С.Г., Пейве А.А., Добролюбова К.О., Иваненко А.Н., Патина И.С., Боголюбский В.А., Добролюбов В.Н., Веклич И.А., Докашенко С.А., Любинецкий В.Л., Ильин И.А. Рельеф, аномальное магнитное поле и строение осадочного чехла в районе сочленения трога Кинг и Азоро-Бискайского поднятия (Северная Атлантика) // Доклады Академии Наук. Науки о Земле. 2024. Т. 516. № 2. С. 499–506. https://doi.org/10.31857/S2686739724060015
- Skolotnev S.G., Peyve A.A., Sokolov S. Yu., Dobrolyubova K.O., Veklich I.A., Ivanenko A.N., Bogolyubskii V.A., Chamov N.P., Dobrolyubov V.N., Denisova A.P., Patina I.S., Lyubinetskii V.L., Tkacheva A.A., Ilyukhina D.M., Fomina V.V. Structure of the Ocean Bottom in the Junction Area of the King’s Trough and Gnitsevich Plateau (North Atlantic) // Doklady Earth Sciences. 2025. V. 520. 20. https://doi.org/10.1134/S1028334X24605145
- Ruddiman W. R, Kidd R.B., Thomas E. et al. Site 608 // Init. Repts. DSDP 1983. V. 94. P. 149–246.
- Семенов Г.А. Сейсмические модели осадочного слоя в океане. М.: ИО АН СССР, 1990. 144 с.
- Kidd R.B., Ramsay A.T.S. The geology and formation of the King’s Trough complex in the light of deep-sea drilling project site 608 drilling // Scientific Results. V. 94. 1987. P. 1245–1265.
- Zhang P., Liu H., Hou S., Wang N., Fang N. Marine Calcareous Biological Ooze Thermoluminescence and Its Application for Paleoclimate Change since the Middle Pleistocene // Water. 2023. V. 15(14). 2618. https://doi.org/10.3390/w15142618
- Naafs B.D. A., Hefter J., Acton G., Haug G.H., Martínez-Garcia A., Pancost R., Stein R. Strengthening of North American dust sources during the late Pliocene (2.7 Ma) // Earth and Planetary Science Letters. 2012. V. 317–318. P. 8–19. https://doi.org/10.1016/j.epsl.2011.11.026
- Dumitru O.A., Austermann J., Polyak V.J., Fornós J.J., Asmerom Y., Ginés J., Ginés A., Onac B.P. Sea-level stands from the Western Mediterranean over the past 6.5 million years // Sci Rep. 2021. V. 11. 261. https://doi.org/10.1038/s41598-020-80025-6
- Lawrence K.T., Sosdian S., White H.E., Rosenthal Y. North Atlantic climate evolution through the Plio-Pleistocene climate transitions // Earth and Planetary Science Letters. 2010. V. 300. Iss. 3–4. P. 329–342. https://doi.org/10.1016/j.epsl.2010.10.013
- Zazo C., Goy J.L., Dabrio C.J., Lario J., González-Delgado J. A., Bardají T., Hillaire-Marcel C., Cabero A., Ghaleb B., Borja F., Silva P.G., Roquero E., Soler V. Retracing the Quaternary history of sea-level changes in the Spanish Mediterranean–Atlantic coasts: Geomorphological and sedimentological approach // Geomorphology. 2013. V. 196. P. 36–49. https://doi.org/10.1016/j.geomorph.2012.10.020
Supplementary files
