Особенности теплофизических свойств сегнетокерамики PbFe0.5Ta0.5O3 с нанополярной структурой

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследованы теплофизические свойства релаксорного мультиферроика PbFe0.5Ta0.5O3 в интервале температур 150–800 К. Обнаружены аномалии теплоемкости, термодиффузии и теплопроводности в области размытого сегнетоэлектрического перехода при TС ≈ 275 К, температуры Бернса ТB ≈ 690 К и промежуточной температуры Т* ≈ 380 К. Установлено, что аномальное поведение теплоемкости в области температур 200–700 К обусловлено трехуровневыми состояниями (аномалия Шоттки). Рассмотрены доминирующие механизмы теплопереноса фононов мультиферроика с нанополярной структурой. Отмечено, что аномальное поведение теплофизических свойств в области температур ТB > T > TС обусловлено ростом и изменениями, происходящими в системе реориентируемых нанополярных областей. Показано, что исследования теплофизических свойств позволяют определить все характерные для сегнеторелаксоров температуры, связанные с возникновением и температурной эволюцией нанополярной структуры. Результаты исследований обсуждаются совместно со структурными данными.

Full Text

Restricted Access

About the authors

С. Н. Каллаев

Дагестанский федеральный исследовательский центр Российской академии наук

Author for correspondence.
Email: kallaev-s@rambler.ru

Институт физики им. Х. И. Амирханова

Russian Federation, ул. М. Ярагского, 94, Махачкала, 367005

А. Г. Бакмаев

Дагестанский федеральный исследовательский центр Российской академии наук

Email: kallaev-s@rambler.ru

Институт физики им. Х. И. Амирханова

Russian Federation, ул. М. Ярагского, 94, Махачкала, 367005

З. М. Омаров

Дагестанский федеральный исследовательский центр Российской академии наук

Email: kallaev-s@rambler.ru

Институт физики им. Х. И. Амирханова

Russian Federation, ул. М. Ярагского, 94, Махачкала, 367005

К. Борманис

University of Latvia

Email: kallaev-s@rambler.ru

Institute of Solid State Physics

Latvia, Kengaraga Street, 8, Riga, LV-1063

References

  1. Bokov A.A., Ye Z.-G. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure // J. Mater. Sci. 2006. V. 41. № 1. P. 31–52. https://doi.org/10.1007/s10853-005-5915-7
  2. Nomura S., Takabayashi H., Nakagawa T. Dielectric and Magnetic Properties of Pb(Fe1/2Ta1/2)O3 // Jpn. J. Appl. Phys. 1968. V. 7. № 6. P. 600. https://doi.org/
  3. Martinez R., Palai R., Huhtinen H., Liu J., Scott J.F., Katiyar R.S. Nanoscale Ordering and Multiferroic Behavior in Pb(Fe1/2Ta1/2)O3 // Phys. Rev. B. 2010. V. 82. P. 134104. https://doi.org/10.1103/PhysRevB.82.134104
  4. Lampis N., Sciau Ph., Lehmann A.G. Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe0.5Ta0.5O3 // J. Phys. Condens. Matter. 2000. V. 12. № 11. P. 2367–2378. https://doi.org/10.1088/0953-8984/12/11/303
  5. Lehmann A.G., Kubel F., Schmid H. The Disordered Structure of the Complex Perovskite Pb(Fe0.5Ta0.5)O3 // J. Phys. Condens. Matter. 1997. V. 9. № 39. P. 8201-8212. https://doi.org/10.1088/0953-8984/9/39/006
  6. Lehmann A.G., Sciau Ph. Ferroelastic Symmetry Changes in the Perovskite PbFeY0.5Ta0.5O3 // J. Phys. Condens. Matter. 1999. V. 11. № 5. P. 1235. https://doi.org/10.1088/0953-8984/11/5/011
  7. Raevski I.P., Molokeev M.S., Misyul S.V., Eremin E.V., Lazhevich A.V., Kubrin S.P., Sarichev D.A., Titov V.V., Chen H., Chou C.C., Raevskaya S.I., Malitskaya M.A. Studies of Ferroelectric and Magnetic Phase Transitions in Multiferroic PbFe0.5Ta0.5O3 // Ferroelectrics. 2015. V. 475. P. 52–60. https://doi.org/10.1080/00150193.2015.995009
  8. Shvorneva L.I., Venevtsev N. Y. Perovskites with Ferroelectric–Magnetic PropertieS // Sov. Phys. JETP. 1966. V. 22. № 4. P. 722–724.
  9. Kubrin S.P., Raevskaya S.I., Kuropatkina S.A., Sarychev D.A., Raevski I.P. Dielectric and Mossbauer Studies of B-Cation Order-Disorder Effect on the Properties of Pb(Fe1/2Ta1/2)O3 Relaxor Ferroelectric // Ferroelectrics. 2006. V. 340. № 1. P. 155–159. https://doi.org/10.1080/00150190802408945
  10. Bonny W., Bonin M., Sciau Ph., Schenk K.J., Chapuis G. Phase Transitions in Disordered Lead Iron Niobate – X-Ray and Synchrotron Radiation Diffraction Experiments // Solid State Commun. 1997. V. 102. P. 347–352. https://doi.org/10.1016/S0038-1098(97)00022-7
  11. Cross L.E. Relaxor Ferroelectrics // Ferroelectrics. 1987. V. 76. P. 241–267. https://doi.org/10.1007/978-3-540-68683-5_5
  12. Bokov A.A., Shpak L.A., Rayevsky I.P. Diffuse Phase Transition in Pb(Fe0.5Nb0.5)O3-Based Solid Solutions // J. Phys. Chem. Solids. 1993. V. 54. P. 495–499. https://doi.org/10.1016/0022-3697(93)90333-M
  13. Zhu W.Z., Kholkin A., Mantas P.Q., Baptista J.L., Preparation and Characterisation of Pb(Fe1/2Ta1/2)O3 Relaxor Ferroelectric // J. Eur. Ceram. Soc. 2000. V. 20. P. 2029–2034. https://doi.org/10.1134/1.1523518
  14. Raevski I.P., Eremkin V.V., Smotrakov V.G., Malitskaya M.A., Bogatina S.A., Shilkina L.A. Growth and Study of PbFe1/2Ta1/2O3 Single Crystals // Crystallogr. Rep. 2002. V. 47. P. 1076–1081. https://doi.org/10.1134/1.1523518
  15. Bormanis K., Burkhanov A.I., Waingolts A.I., Kalvane A. Electrical Properties of Lead Ferrotantalate Ceramics // Integr. Ferroelectr. 2009. V. 108. P. 134–139. https://doi.org/10.1080/00150193.2019.1569980
  16. Burns G., Dacol F.H. Glassy Polarization Behavior in Ferroelectric Compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 // Solid State Commun. 1983. V. 48. № 10. P. 853–856. https://doi.org/10.1016/0038-1098(83)90132-1
  17. Dul’kin E., Roth M., Janolin P.-E., Dkhil B. Acoustic Emission Study of Phase Transitions and Polar Nanoregions in Relaxor-based Systems: Application to the PbZn1/3Nb2/3O3 Family of Single Crystals // Phys. Rev. B. 2006. V. 73. № 1. P. 012102. https://doi.org/10.1103/PhysRevB.73.012102
  18. Mihailova B., Maier B., Paulmann C., Malcherek T., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. High-temperature Structural Transformations in the Relaxor Ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3 // Phys. Rev. B. 2008. V. 77. P. 174106. https://doi.org/10.1103/PHYSREVB.77.174106
  19. Dkhil B., Gemeiner P., Al-Barakaty A., Bellaiche L., Dul’kin E., Mojaev E., Roth M. Intermediate Temperature Scale T in Lead-based Relaxor Systems // Phys. Rev. B. 2009. V. 80. P. 064103. https://doi.org/10.1103/PhysRevB.80.064103
  20. Roth M., Mojaev E., Dul’kin E., Gemeiner P., Dkhil B. Phase Transition at a Nanometer Scale Detected by Acoustic Emission within the Cubic Phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 Relaxor Ferroelectrics // Phys. Rev. Lett. 2007. V. 98. № 26. P. 265701. https://doi.org/10.1103/PhysRevLett.98.265701
  21. Toulouse J. The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning // Ferroelectrics. 2008. V. 369. № 13. P. 203–213. https://doi.org/10.1080/08838150802378160
  22. Gorev M.V., Flerov I.N., Sciau Ph., Bondarev V.S., Geddo-Lehmann A. Heat Capacity and Thermal Expansion Studies of Relaxors // Ferroelectrics. 2004. V. 307. P. 127–136. https://doi.org/10.1080/00150190490492240
  23. Dul’kin E.A., Raevski I.P., Emel’yanov S.M. Acoustic Emission and Thermal Expansion of PbFe0.5Nb0.5O3 Crystals near Phase Transitions // Phys. Solid State. 1997. V. 39. P.363–364. https://doi.org/10.1080/00150190490492240
  24. Ronguette J., Hainеs J., Bornand V. Transition to a Cubic Phase with Symmetry-breaking Disorder in PbZr0.52Ti0.48O3 at High Pressure // Phys. Rev. B. 2002. V. 65. P. 214102-1–214102-4. https://doi.org/10.1103/PhysRevB.65.214102
  25. Kallaev S.N., Omarov Z.M., Bakmaev A.G., Mitarov R.G., Reznichenko L.A., Bormanis K. Thermal Properties of Multiferroic Bi1−xEuxFeO3 (х = 0–0.40) Ceramics // J. Alloys Compd. 2017. V. 695. P. 3044–3047. https://doi.org/10.1016/j.jallcom.2016.11.347
  26. Жузе В.П. Физические cвойства халькогенидов редкоземельных элементов. Л.: Наука, 1973. 304 c.
  27. Mitarov R.G., Tikhonov V.V., Vasilev L.N., Golubkov A.V., Smirnov I.A. Schottky Effect in the Pr3Te4–Pr2Te3 System // Phys. Status Solidi A. 1975. V. 30. № 2. P. 457–467. https://doi.org/10.1002/pssa.2210300204
  28. Nuzhnyy D., Petzelt J., Bovtun V., Kamba S., Hlinka J. Soft Mode Driven Local Ferroelectric Transition in Lead-based Relaxors // Appl. Phys. Lett. 2019. V. 114. № 18. P. 182901. https://doi.org/10.1063/1.5090468
  29. Smirnova E., Sotnikov A., Zaitseva N., Schmidt H., Weihnacht M. Acoustic Properties of Multiferroic PbFe1/2Ta1/2O3 // Phys. Lett. A. 2010. V. 374. № 41. P. 4256–4259. https://doi.org/10.1016/j.physleta.2010.08.039
  30. Isupov V.A. New Approach to Phase Transition in Relaxor Ferroelectrics // Phys. Status Solidi B. 1999. V. 213. P. 211–218. https://doi.org/10.1002/(SICI)1521-3951(199905)213:1<211::AID-PSSB211>3.0.CO;2-L
  31. Kolesova R., Kupriyanov M. Structural Study of PbFe0.5Nb0.5O3 Crystal in the Paraelectric Phase // Phase Transitions. 1993. V. 45. № 4. P. 271–276. https://doi.org/10.1080/01411599308213210
  32. Lampis N., Sciau Ph., Lehmann A.G. Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe0.5Nb0.5O3 // J. Phys.: Condens. Matter. 1999. V. 11. № 17. P. 3489–3501. https://doi.org/10.1088/0953-8984/12/11/303

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependence of heat capacity Ср of ferroelectric PbFe0.5Ta0.5O3 (solid line is the result of approximation of phonon heat capacity by the Debye function).

Download (51KB)
3. Fig. 2. Temperature dependence of anomalous component of heat capacity ∆Ср of ferroelectric PbFe0.5Ta0.5O3 (solid line is the result of approximation by expression (1)).

Download (71KB)
4. Fig. 3. Temperature dependence of thermal diffusion ή of ferroelectric PbFe0.5Ta0.5O3; inset – temperature dependence of phonon mean free path.

Download (52KB)
5. Fig. 4. Temperature dependence of thermal conductivity λ of ferroelectric PbFe0.5Ta0.5O3.

Download (38KB)

Copyright (c) 2024 Russian Academy of Sciences