BEHAVIOR OF SECTORAL INSTABILITIES DEPENDING ON THE PARAMETERS OF THE GENERALIZED MODEL OF A SELF-GRAVITATING DISK

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this work, we investigate the problem of gravitational instability in a generalized model of a nonlinearly radially pulsating disk with an anisotropic velocity diagram relative to sectoral modes of perturbations. This model is a non-stationary generalization of the equilibrium self-gravitating disk by Bisnovatyi-Kogan and Zeldovich. Exact expressions are obtained for the main physical characteristics of the generalized model, such as the components of the kinetic energy of the pulsating disk, velocity dispersions in the radial and transverse directions, the global anisotropy parameter, and others. We also found non-stationary analogs of dispersion equations (NADE) against the background of this generalized model for sectoral modes of perturbations. Based on the results of numerical calculations of NADE, graphs comparing the instability increments depending on the initial virial ratio of the system for various values of the parameters α and β, characterizing the difference and degree of anisotropy of nonlinearly non-stationary models of the self-gravitating disk, were constructed. In particular, it is shown that the development of bar-like mode instability will be the same for all anisotropic models, as the NADE of this mode does not depend on the parameters α and β. The work is partially based on a talk presented at the Modern Stellar Astronomy 2024 conference.

About the authors

K. T. Mirtadjieva

National University of Uzbekistan, named after Mirzo Ulugbek; Astronomical Institute of the Academy of Sciences of the Republic of Uzbekistan

Email: mkt1959@mail.ru
Tashkent, Uzbekistan

S. N. Nuritdinov

National University of Uzbekistan, named after Mirzo Ulugbek

Email: nur200848@mail.ru
Tashkent, Uzbekistan

References

  1. М.Г. Абрамян, Динамика вложенных гравитирующих подсистем, дисс. доктора физ.-мат. наук, 01.03.02, Ереван, 1986.
  2. G.S. Bisnovatyi-Kogan, Astrophysics 35(2-3), 410 (1993).
  3. А.Г. Морозов, Физика гравитирующего диска, дисс. доктора физ.-мат. наук, 01.03.02, Ленинград, 1986.
  4. V. Antonov, Uchen. Zapiski LGU 32, 79 (1976).
  5. A.M. Fridman, VL. Polyachenko, translated by A.B. Aries, and I.N. Poliakoff, Physics of gravitating systems. II. Nonlinear collective processes: nonlinear waves, solitons, collisionless shocks, turbulence. Astrophysical applications (New York-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1984).
  6. A.J. Kalnajs, Astrophys. J. 175, 63 (1972).
  7. J. Binney and S. Tremaine, Galactic Dynamics: Second Edition (Princeton, NJ USA: Princeton University Press, 2008).
  8. K.T. Mirtadjieva, Gravitation and Cosmology 15(3), 278 (2009).
  9. S.N. Nuritdinov, K.T. Mirtadjieva, I. Ahmad, and J.K. Ruzibaev, Astrophysics 52(4), 584 (2009).
  10. K.T. Mirtadjieva, S.N. Nuritdinov, J.K. Ruzibaev, andM. Khalid, Astrophysics 54(2), 184 (2011).
  11. K.T. Mirtadjieva, Gravitation and Cosmology 18(1), 6 (2012).
  12. K.T. Mirtadjieva, Gravitation and Cosmology 18(4), 249 (2012).
  13. K.T. Mirtadjieva andK.A. Mannapova, Gravitation and Cosmology 27(3), 212 (2021), arXiv:2012.13597 [astro-ph.GA].
  14. K.T. Mirtadjieva, S.N. Nuritdinov, K.A. Mannapova, and T.O. Sadibekova, Astrophysics 65(2), 247 (2022).
  15. K.T. Mirtadjieva andS.N. Nuritdinov, Astron. Rep. 67(5), 502 (2023).
  16. K.T. Mirtadjieva, S.N. Nuritdinov, andA.U. Omo-nov, Astrophys. Bull. 79(2), 221 (2024).
  17. K.T. Mirtadjieva and S.N. Nuritdinov, Astrophysics 55(4), 551 (2012).
  18. G.S. Bisnovatyi-Kogan and Y.B. Zel’dovich, As-trofizika 6, 387 (1970).
  19. S.N. Nuritdinov, Astron. Astrophys. Trans. 7(4), 307 (1995).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences