Electronic Structure and Magnetic Properties of FeRhSn1 – xZx (Z = Ge, Si, Sb): Ab Initio Study

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Abstract—

Magnetic properties and electronic structure of FeRhSn1 – xZx alloys (x = 0, 0.25, 0.5, 0.75, 1) have been investigated by first-principles methods using the VASP software package. It is shown that for all alloys the γ phase is energetically favorable, except for the FeRhSi alloy, for which the β phase is equilibrium. It is shown that the addition of a fourth element to a three-component alloy leads to a change in the position of the valence zone and conduction zone relative to the Fermi level, which makes it possible to obtain new four-component alloys possessing one hundred percent spin polarization. It is shown that FeRhSn1 – xGex (x = 0, 0.25, 0.5, 0.75, 1), FeRhSn1 – xSix (x = 0, 0.25, 0.5, 0.75) and FeRhSn1 – xSbx (x = 0, 0.25) alloys are half-metallic ferromagnets.

Авторлар туралы

O. Pavlukhina

Chelyabinsk State University

Хат алмасуға жауапты Автор.
Email: pavluhinaoo@mail.ru
Russia, 454001, Chelyabinsk

V. Sokolovskiy

Chelyabinsk State University

Email: pavluhinaoo@mail.ru
Russia, 454001, Chelyabinsk

V. Buchelnikov

Chelyabinsk State University

Email: pavluhinaoo@mail.ru
Russia, 454001, Chelyabinsk

Әдебиет тізімі

  1. Sakurada S., Shutoh N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds // Appl. Phys. Lett. 2005. V. 86. P. 082105 (3).
  2. Kimura Y., Tamura Y., Kita T. Thermoelectric properties of directionally solidified half – Heusler compounds NbCoSn alloys // Appl. Phys. Lett. 2008. V. 92. P. 012105 (3).
  3. Winterlik J., Fecher G.H., Thomas A., Felser C. Superconductivity in palladium based Heusler compounds // Phys. Rev. B. 2009. V. 79. P. 064508 (9).
  4. Ma J., Hegde V.I., Munira K., Xie Y., Keshavarz S., Mildebrath D.T., Wolverton C., Ghosh A.W., Butler W.H. Computational investigation of half-Heusler compounds for spintronics applications // Phys. Rev. B. 2017. V. 95. P. 024411 (25).
  5. Meenakshi R., Srinivasan R.A.S., Amudhavalli A., Rajeswarapalanichamy R., Iyakutti K. Electronic structure, magnetic, optical and transport properties of half-Heusler alloys RhFeZ (Z = P, As, Sb, Sn, Si, Ge, Ga, In, Al) – a DFT study // Phase Trans. 2021. V. 94. P. 415–435.
  6. De Groot R.A., Mueller F.M., van Engen P.G., Buschow K.H.J. New Class of Materials: Half-Metallic Ferromagnets // Phys. Rev. Lett. 1983. V. 50. P. 2024–2027.
  7. Ahmad R., Mehmood N.A. Density functional theory investigations of half-Heusler compounds RhVZ (Z = P, As, Sb) // J. Supercond. Nov. Magn. 2017. V. 3. P. 1577–1586.
  8. Muhammad I., Zhang J.-M., Alia A., Rehman M.U., Muhammad S. Structural, mechanical, thermal, magnetic, and electronic properties of the RhMnSb half-Heusler alloy under pressure // Mater. Chem. Phys. 2020.V. 251. P. 123110 (9).
  9. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D. Segregation tendency and properties of FeRh1 – xPtx alloys // JMMM. 2022. V. 556. P. 169403 (5).
  10. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D., Zagrebin M.A. Investigation of electronic, magnetic and structural properties of the Fe1 − xMnxRh // JMMM. 2019. V. 476. P. 325–328.
  11. Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D. Modeling of the structural and magnetic properties of Fe−Rh−Z (Z= Mn, Pt) alloys by first principles methods // JMMM. 2019. V. 470. P. 69–72.
  12. Bennani M.A., Aziz Z., Terkhi S., Elandaloussi E.H., Bouadjemi B., Chenine D., Benidris M., Youb O., Bentata S. Structural, electronic, magnetic, elastic, thermodynamic, and thermoelectric properties of the half-Heusler RhFeX (with X = Ge, Sn) compounds // J. Supercond. Nov. Magn. 2021. V. 34. P. 211–225.
  13. Zhanga Y., Xub X. Machine learning modeling of lattice constants for half-Heusler alloys // AIP Advances. 2020. V. 10. P. 045121.
  14. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. P. 11 169–11 186.
  15. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. V. 77. P. 3865–3868.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (410KB)
3.

Жүктеу (256KB)
4.

Жүктеу (157KB)
5.

Жүктеу (426KB)
6.

Жүктеу (305KB)