Методика расчета линии фазового равновесия хладагентов от тройной до критической точки
- Авторы: Рыков С.В.1, Кудрявцева И.В.1, Рыков В.А.1
-
Учреждения:
- Университет ИТМО
- Выпуск: Том 106, № 3 (2017)
- Страницы: 26-30
- Раздел: Статьи
- URL: https://freezetech.ru/0023-124X/article/view/99206
- DOI: https://doi.org/10.17816/RF99206
- ID: 99206
Цитировать
Полный текст



Аннотация
В рамках предложенной методики расчет линии равновесия осуществляется на основе системы взаимосогласованных уравнений, в которую входит уравнение линии упругости ps = ps(Ts) (где ps - давление на линии упругости; Ts - температура на линии упругости) и уравнения, описывающие паровую r- = r-(Ts) и жидкостную r+ = r+(Ts) ветви линии насыщения (где r - плотность). При этом уравнение для r- = r-(Ts) строится на основе модифицированного уравнения Клапейрона-Клаузиуса, которое включает в свою структуру «кажущуюся» теплоту парообразования r*, связанную с теплотой парообразования r зависимостью r = r*(1 - r-/ r+). На основе предложенной методики рассчитана линия фазового равновесия, удовлетворяющая в критической области правилу среднего диаметра линии насыщения fd в соответствии с «завершенным» скейлингом: fd ~ t2b, где b - критический индекс линии насыщения. Предлагаемая методика апробирована на примере расчета линии фазового равновесия хладагента R32 в диапазоне температур от тройной до критической точки. Показано, что погрешность расчета ps и r± соответствует экспериментальной погрешности этих величин во всем указанном диапазоне.
Полный текст

Об авторах
Сергей Владимирович Рыков
Университет ИТМО
Email: togg1@yandex.ru
Канд. техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9
Ирина Владимировна Кудрявцева
Университет ИТМО
Email: togg1@yandex.ru
Канд. техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9
Владимир Алексеевич Рыков
Университет ИТМО
Email: togg1@yandex.ru
Д-р техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9
Список литературы
- Кудрявцева И.В., Рыков В.А., Рыков С.В. Асимметричное единое уравнение состояния R134а // Вестник Международной академии холода. 2008. № 2. С. 36-39.
- Кудрявцева И.В., Рыков А.В., Рыков В.А. Модифицированное уравнение линии насыщения, удовлетворяющее требованиям масштабной теории // Холодильная техника и кондиционирование. 2013. № 2. С. 3.
- Рыков С.В., Кудрявцева И.В., Рыков В.А., Полторацкий М.И., Свердлов А.В. Уравнение состояния хладагента R32 // Холодильная техника. 2016. № 11. С. 34-37.
- Рыков С.В., Кудрявцева И.В., Рыков В.А. Физическое обоснование метода псевдокритических точек // Научнотехнический вестник Поволжья. 2014. № 2. С. 44.
- Рыков С.В., Кудрявцева И.В., Рыков В.А., Устюжанин Е.Е., Попов П.В., Свердлов А.В. Методика расчета термодинамических свойств 2,3,3,3- тетрафторпропана в диапазоне температур 230…370 К и давлений 0,1…10 МПа. ГСССД 247 - 2016.
- Рыков В.А. Анализ закономерностей изменения термодинамических свойств веществ в широком диапазоне параметров состояния, включая окрестность критической точки и метастабильную область: дис.. канд. техн. наук. - Л.: ЛТИХП, 1988. - 275 с.
- Устюжанин Е.Е., Шишаков В.В., Абдулагатов И.М., Рыков В.А., Попов П.В. Давление насыщения технически важных веществ: модели и расчеты для критической области // Вестник МЭИ. 2012. № 2. С. 34-43.
- Defibaugh D.R., Morrison G., Weber L.A. Termodynamic properties of difluoromethane // J.Chem.Eng.Data. 1994. V. 39. 333-340.
- Fan J., Zhao X., Liu Z. Estimation of the vaporization heat // Fluid Phase Equilibria. 2012. V. 313 P. 91-96.
- Kim Y. C., Fisher M. E., Orkoulas G. Asymmetric fluid criticality. I. Scaling with pressure mixing // Physical Review E. 2003. М. 67. 061506.
- Kudryavtseva I.V., Rykov S.V. A Nonparametric Scaling Equation of State, Developed on the Basis of the Migdal’s Phenomenological Theory and Benedek’s Hypothesis // Russian J. of Physical Chemistry A. 2016. V. 90. № 7. P. 1493-1495.
- Kuwabara S., Aoyama H., Sato H., Watanabe K. Vaporliquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroethane // J. Chem. Eng. Data. 1995. V.40. № 1. P. 112-116.
- Magee J.W. Isochoric p-r-T Measurements on Difluoromethane (R32) from 142 to 396 K and Pentafluoroethane (R125) from 178 to 398 K at Pressures to 35 MPa // Int. J. of Thermophysics. 1996. V. 17. № 4. P. 803-822.
- Malbrunot P.F., Meunier P.A., Scatena G.M. Pressurevolumetemperature behavior of difluorometane // J. Chem. Eng. Data. V.13. № 1. P. 13-21.
- Outcalt S.L., McLinden M.O. Equations of State for the Thermodynamic Properties of R32 (Difluoromethane) and R125 (Pentafluoroethane) // Int. J. of Thermophysic. 1995. V. 16. №. 1. P.79-89.
- Polikhronidi N. G.,·Abdulagatov I.M.,·Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., Wu J.T. Experimental study of the thermodynamic properties of diethyl ether (DEE) at saturation // Int. J. Thermophys. 2011. V.32. P. 559-595.
- Sato T., Sato H., Watanabe K. PVT property measurements for difluoropromethane // J.Chem.Eng.Data. 1994. V.39. P. 851-854.
- Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. Scaling models of thermodynamic properties on the coexistence curve: problems and some solutions // Russian J. of Physical Chemistry B. 2012. Т. 6. № 8. С. 912-931.
- Vorob’yev V. S., Rykov V. A., Ustyuzhanin E. E., Shishakov V. V., Popov P.V., Rykov S. V. Comparison of the scaling models for substance densities along saturation line // Journal of Physics: Conference Series. 2016. V. 774. 012017.
- Weber L.A., Silva A.M. Measurements of the vapor pressures of difluoromethane, 1Chloro1,2,2,2tetrafluoroethane, and pentafluoroethane // J. Chem. Eng. Data. 1994. V. 39. P. 808-812.
- Weber L.A., Goodwin R.H. Ebulliometric Measurement of the Vapor Pressure of Difluoromethane // J. Chem. Eng. Data 1993. 38. P. 254-256.
- Widiatmo J.V., Sato H., Watanabe K. SaturatedLiquid Densities and Vapor Pressures of 1,1,1Trifluoroethane, Difluoromethane, and Pentafluoroethane // J. Chem. Eng. Data 1994. V. 39. P. 304-308.
- Zhu M.S., Li J., Wang B.X. Vapor pressure of difluorometane // Int. J. of Termophysics. 1993. V.14. N6. P. 1221-1227.
Дополнительные файлы
