Safety and reliability assessment of CO₂ refrigeration system for underground applications below -50 °C

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A new CO₂ refrigeration concept is evaluated to cool the ATLAS and CMS experiments installed close to 100 m underground, at the Large Hadron Collider (LHC) at CERN. The first prototype unit produced to validate the conceptual design and to assess safety and reliability of the system has been commissioned. This paper presents results obtained, discusses the safety and reliability of the system and discourses on the list of recommendations for the future final units to cover the cooling loads of 380 kW for ATLAS and 750 kW for CMS at -53 °C evaporation temperature.

This article is a translation of the article by Barroca P, Verlaat B, HafnerA, Blust S, Hulek W, Zwalinski L, Teixeira D. Safety and reliability assessment of CO₂ refrigeration system for underground applications below -50 °C. In: Proceedings of the 9th IIR Conference on the Ammonia and CO₂ Refrigeration Technologies. Ohrid: IIF/IIR, 2021. DOI: 10.18462/iir.nh3-co2.2021.0024 Published with the permission of the copyright holder.

全文:

受限制的访问

作者简介

Pierre Barroca

Department of Energy and Process Engineering NTNU

编辑信件的主要联系方式.
Email: pierre.a.c.barroca@ntnu.no
挪威, 7491, Trondheim

Bart Verlaat

Department of Energy and Process Engineering NTNU

Email: bart.verlaat@cern.ch
瑞士, 7491, Trondheim

Armin Hafner

Department of Energy and Process Engineering NTNU

Email: armin.hafner@ntnu.no
挪威, 7491, Trondheim

Stephanie Blust

Department of Energy and Process Engineering NTNU

Email: stefanie.blust@ntnu.no
挪威, 7491, Trondheim

Wojciech Hulek

CERN

Email: lukasz.zwalinski@cern.ch
瑞士, Geneva

Lukasz Zwalinski

CERN

Email: lukasz.zwalinski@cern.ch
瑞士, Geneva

Daniella Teixeira

University of Cape Town

Email: TXRDAN001@myuct.ac.za
南非, Cape Town

参考

  1. Verlaat B, Van Lysebetten A, Van Beuzekom M. CO₂ cooling for the LHCb-VELO Experiment at CERN. In: 8th IFF/IRR Gustav Lorentzen Conference on Natural Working Fluids. Copenhagen; 2008.
  2. Zwalinski L, Bortolin C, Blaszczyk T, et al. CO₂ cooling system for Insertable B Layer detector into the ATLAS experiment. Amsterdam: TIPP; 2014.
  3. Daguin J, et al. CO₂ cooling for particle detectors: experiences from the CMS and ATLAS detector systems at LHC, and prospects for future upgrades. In: Proceedings of the 24th IIR International Congress of Refrigeration. Yokohama; 2015.
  4. Petagna P, Verlaat B, Francescon A. Two-Phase Thermal Management of Silicon Detectors for High Energy Physics. In: Encyclopedia of Two-Phase Heat Transfer and Flow III. 2015:335–412. doi: 10.1142/9789813229471_0005
  5. Barroca P., Hafner A., Pardiñas A., et al. Evaporative cooling system with natural refrigerant at -50 ℃ and 100 m underground. In: Proceedings of 14th Gustav Lorentzen Conference. Kyoto; 2020.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Refrigeration subsystems: common equipment, compressor slice and cold box. Reference to the state points of pressure-enthalpy diagram of Fig. 2.

下载 (154KB)
3. Fig. 2. CO₂ pressure-enthalpy diagram with the theoretical process flow for the transcritical two-stage compressor cycle proposed for the chiller.

下载 (105KB)
4. Fig. 3. Parameterized backpressure setpoint used to optimize COP.

下载 (64KB)
5. Fig. 4. Brand#1 compressor reaction to sudden change of load.

下载 (99KB)
6. Fig. 5. (left) Path of CO₂ condensation and draining into the oil separator. (right) Visualisation of CO₂ condensation through oil level switch sight glass.

下载 (246KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##