Poteri ot neravnovesnogo regenerativnogo teploobmena v kholodil'nykh kompressorakh



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The processes in the world around involve losses, and the task of any engineer is to take them into account at the stage of a machine design. But the losses may be concealed coming into being in one process and showing quite in another one. Such losses are the losses in the compressors owing to a nonequilibrium regenerative heat exchange. In some constructions they may be completely absent but in the others they may occur and lead to reducing the compressor output or showing in a different way. Today the methods of the thermodynamic calculation of a compressor don’t include a direct calculation of losses due to a nonequilibrium regenerative heat exchange. The paper analyses the mechanism of losses that appear due to regenerative heat exchange during the process of a cyclic gas compression in the compressor; the method to calculate such losses is cited. It is based on the analytic solution of the problem of the nonstationary heat conductivity in a semibounded body at harmonic boundary conditions. As an example to use the method were calculated the losses due to nonequilibrium regenerative heat exchange in the PB100 refrigeration compressor, the losses share of the compressor consumed power was defined. Keywords: compressors; work losses from nonequilibrium regenerative heat exchange in the compressor; thermodynamic calculation of a compressor; entropy analysis

Full Text

Restricted Access

References

  1. Архаров А.М. О газовых интегрированных циклах тепловых насосов для генерации тепла и холода //Холодильная техника. 2012. № 1. С. 36-41.
  2. Архаров А.М., Буткевич К.С., Буткевич И.К., Миркин А.З. Криогенные поршневые детандеры. - М.: Машиностроение, 1974. - 240 с.
  3. Колосов М.А. Теорема ГюиСтодолы применительно к холодильной технике //Холодильная техника. 2013. № 8. С. 40-44; № 9, С. 51-55.
  4. Кошкин Н.Н., Сакун И.А., Бамбушек Е.М. и др. Холодильные машины. - Л.: Машиностроение, Ленингр. отд., 1985. - 510 с.
  5. Кутателадзе С.С. Основы теории теплообмена. - Новосибирск: Наука, 1970. - 659 с.
  6. Лыков А.В. Теория теплопроводности. - М.: Высшая школа. 1967. - 599 с.
  7. Новотельнов В.Н., Суслов А.Д., Полтараус В.Б. Криогенные машины. - СПб.: Политехника. 1991. - 335 с.
  8. Пластинин П.И. Поршневые компрессора. Т. 1. Теория и расчет. - М.: Колос, 2000. - 456 с.
  9. Френкель М.И. Поршневые компрессора. - М.: Колос, 2000. - 456 с.
  10. Холодильные компрессоры / А.В. Быков, Э.М. Бежанишвили, И.М. Калнинь и др.; под ред. А.В. Быкова. 2е изд. - М.: Колос, 1992. - 304 с.
  11. Шергут Я., Петела Р. Эксергия. - М.: Энергия, 1968.
  12. Arnold V. I. Mathematical Methods of Classical Mechanics - Berlin: SpringerVerlag, 1989.
  13. Adrian Bejan “Advancet Engineering Thermodynamics”, second edition, NJ: John Wiley, 2006, s. 260.
  14. Gouy G. Sur les transformation et l‘équilibre en thermodynamique. Compte. Rendu. Acad. Sci. Paris 1889, 108, 507-509.
  15. Gouy G. Sur l‘énergie utilizable. J. Phys. 1889, 8, 501-518.
  16. Prigogine I. Introduction to Thermodynamics of Irreversible Processes. New York: Interscience, 1961.
  17. Stodola Aurel. Gazund Dampfturbinen - Berlin, 1910. - 810 р.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Kolosov M.A., Borisenko A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies