Optically аctive films based on AOT-stabilized silver organosol
- Authors: Bocharov V.V.1, Sulyaeva V.S.1, Kolodin A.N.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 87, No 3 (2025)
- Pages: 173-186
- Section: Articles
- Submitted: 11.07.2025
- Accepted: 11.07.2025
- Published: 14.07.2025
- URL: https://freezetech.ru/0023-2912/article/view/687293
- DOI: https://doi.org/10.31857/S0023291225030015
- EDN: https://elibrary.ru/TBAQXM
- ID: 687293
Cite item
Abstract
The composite films based on silver organosol stabilised with anionic surfactant (AOT or bis(2-ethylhexyl)sodium sulphosuccinate) were obtained by the dip-coating method on polystyrene substrates. The films exhibit a surface plasmon resonance signal due to the presence of silver nanoparticles localised in the stabiliser layer. The film formation process is concomitant with the development of silver chain aggregates characterised by an interparticle distance that exceeds the particle diameters. The formation of aggregates does not induce alterations in the optical properties of nanoparticles. The obtained films exhibit a plasmonic signal and no plasmonic delocalisation. Due to varying the number of substrate immersions in the sol, it allows one to change the functional properties of the obtained films (viz., roughness (from 9 ± 2 to 25 ± 4 nm), wettability (from 36 ± 6 to 53 ± 9°), the morphology, the thickness (from 585 ± 13 to 831 ± 28 nm) and surface plasmon resonance signal).
Full Text

About the authors
V. V. Bocharov
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090
V. S. Sulyaeva
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090
A. N. Kolodin
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090
References
- Acharya B., Behera A., Behera S. Optimizing drug discovery: Surface plasmon resonance techniques and their multifaceted applications // Chemical Physics Impact. 2024. V. 8. P. 100414. https://doi.org/10.1016/j.chphi.2023.100414
- Olaru A., Bala C., Jaffrezic-Renault N., et al. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis // Critical Reviews in Analytical Chemistry. 2015. V. 45. № 2. P. 97–105. https://doi.org/10.1080/10408347.2014.881250
- Libánská A., Špringer T., Peštová L., et al. Using surface plasmon resonance, capillary electrophoresis and diffusion-ordered NMR spectroscopy to study drug release kinetics // Communications Chemistry. 2023. V. 6. № 1. P. 180. https://doi.org/10.1038/s42004-023-00992-5
- Gaudreault J., Forest-Nault C., de Crescenzo G., et al. On the use of surface plasmon resonance-based biosensors for advanced bioprocess monitoring // Processes. 2021. V. 9. № 11. P. 1996. https://doi.org/10.3390/pr9111996
- Du Y., Qu X., Wang G. Applications of surface plasmon resonance in biomedicine // Highlights in Science, Engineering and Technology. 2022. V. 3. P. 137–143. https://doi.org/10.54097/hset.v3i.702
- Das S., Devireddy R., Gartia M.R. Surface plasmon resonance (SPR) sensor for cancer biomarker detection // Biosensors. 2023. V. 13. № 3. P. 396. https://doi.org/10.3390/bios13030396
- Janith G.I., Herath H.S., Hendeniya N., et al. Advances in surface plasmon resonance biosensors for medical diagnostics: An overview of recent developments and techniques // Journal of Pharmaceutical and Biomedical Analysis Open. 2023. V. 2. P. 100019. https://doi.org/10.1016/j.jpbao.2023.100019
- Qi M., Lv D., Zhang Y., et al. Development of a surface plasmon resonance biosensor for accurate and sensitive quantitation of small molecules in blood samples // Journal of Pharmaceutical Analysis. 2022. V. 12. № 6. P. 929–936. https://doi.org/10.1016/j.jpha.2022.06.003
- Mariani S., Minunni M. Surface plasmon resonance applications in clinical analysis // Analytical and Bioanalytical Chemistry. 2014. V. 406. № 9–10. P. 2303–2323. https://doi.org/10.1007/s00216-014-7647-5
- Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., et al. Biomedical applications of an ultra-sensitive surface plasmon resonance biosensor based on smart MXene quantum dots (SMQDs) // Biosensors. 2022. V. 12. № 9. P. 743. https://doi.org/10.3390/bios12090743
- Liu W., Liu C., Wang J., et al. Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing // Results in Physics. 2023. V. 47. P. 106365. https://doi.org/10.1016/j.rinp.2023.106365
- Zhang P., Chen Y.P., Wang W., et al. Surface plasmon resonance for water pollutant detection and water process analysis // TrAC – Trends in Analytical Chemistry. 2016. V. 85. № С. P. 153–165. https://doi.org/10.1016/j.trac.2016.09.003
- Tortolini C., Frasconi M., di Fusco M., et al. Surface plasmon resonance biosensors for environmental analysis: General aspects and applications // International Journal of Environment and Health. 2010. V. 4. № 4. P. 305–322. https://doi.org/10.1504/IJENVH.2010.037496
- Brulé T., Granger G., Bukar N., et al. A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters // Analyst. 2017. V. 142. № 12. P. 2161–2168. https://doi.org/10.1039/c7an00216e
- Zain H.A., Batumalay M., Harith Z., et al. Surface plasmon resonance sensor for food safety // Journal of Physics: Conference Series. 2022. V. 2411. P. 012023. https://doi.org/10.1088/1742-6596/2411/1/012023
- Ravindran N., Kumar S., Yashini M., et al. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review // Critical Reviews in Food Science and Nutrition. 2023. V. 63. № 8. P. 1055–1077. https://doi.org/10.1080/10408398.2021.1958745
- Balbinot S., Srivastav A.M., Vidic J., et al. Plasmonic biosensors for food control // Trends in Food Science and Technology. 2021. V. 111. P. 128–140. https://doi.org/10.1016/j.tifs.2021.02.057
- Ansari M.T.I., Raghuwanshi S.K., Kumar S. Recent advancement in fiber-optic-based SPR biosensor for food adulteration detection – A review // IEEE Transactions on Nanobioscience. 2023. V. 22. № 4. P. 978–988. https://doi.org/10.1109/TNB.2023.3278468
- Babu R.S., Colenso H.R., Gouws G.J., et al. Performance enhancement of an Ag–Au bimetallic SPR sensor: A theoretical and experimental study // IEEE Sensors Journal. 2023. V. 23. № 10. P. 10420–10428. https://doi.org/10.1109/JSEN.2023.3265896
- Демидова М.Г., Колодин А.Н., Максимовский Е.А., Булавченко А.И. Получение, оптические свойства и смачиваемость двусторонних пленок на основе нанокомпозита серебро–сорбитан моноолеат // Журнал Физической Химии. 2020. Т. 94. № 8. С. 1256–1262. https://doi.org/10.31857/s0044453720080063
- Kolodin A.N., Korostova I.V., Sulyaeva V.S., et al. Au@AOT films with adjustable roughness, controlled wettability and plasmon effect // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 629. P. 127375. https://doi.org/10.1016/j.colsurfa.2021.127375
- Mahmudin L., Ulum M.S., Farhamsa D., et al. The effect of variation of reducing agent concentration on optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor // Journal of Physics: Conference Series. 2019. V. 1242. P. 012027. https://doi.org/10.1088/1742-6596/1242/1/012027
- Silva A.L.C.M.D., Gutierres M.G., Thesing A., et al. SPR biosensors based on gold and silver nanoparticle multilayer films // Journal of the Brazilian Chemical Society. 2014. V. 25. № 5. P. 928–934. https://doi.org/10.5935/0103-5053.20140064
- Rodrigues R. da R., Pellosi D.S., Louarn G., et al. Nanocomposite films of silver nanoparticles and conjugated copolymer in natural and nano-form: structural and morphological studies // Materials. 2023. V. 16. № 10. P. 3663. https://doi.org/10.3390/ma16103663
- Kolodin A.N., Bulavchenko O.A., Syrokvashin M.M., et al. Conductive silver films with tunable surface properties: thickness, roughness and porosity // Applied Surface Science. 2023. V. 629. № 4. P. 157392. https://doi.org/10.1016/j.apsusc.2023.157392
- Полеева Е.В., Арымбаева А.Т., Булавченко О.А., Плюснин П.Е., Демидова М.Г., Булавченко А.И. Получение серебряных электропроводящих пленок из электрофоретических концентратов, стабилизированных сорбитана моноолеатом и бис (2-этилгексил)сульфосукцинатом натрия в н-декане // Коллоидный журнал. 2020. Т. 82. № 3. С. 346–353. https://doi.org/10.31857/s0023291220030076
- Колодин А.Н., Коростова И.В., Максимовский Е.А., Арымбаева А.Т., Булавченко А.И. Исследование дисперсности органозолей золота путем использования композитных пленок Au–AOT // Коллоидный журнал. 2020. Т. 82. № 5. С. 576–584. https://doi.org/10.31857/s0023291220050092
- Kolodin A.N. Hydrophilization and plasmonization of polystyrene substrate with Au nanoparticle organosol // Surfaces and Interfaces. 2022. V. 34. P. 102327. https://doi.org/10.1016/j.surfin.2022.102327
- Поповецкий П.С., Булавченко А.И., Арымбаева А.Т., Булавченко О.А., Петрова Н.И. Синтез и электрофоретическое концентрирование Ag–Cu-наночастиц типа ядро–оболочка в микроэмульсии AOT в н-декане // Журнал Физической Химии. 2019. Т. 93. № 8. С. 1237–1242. https://doi.org/10.1134/s0044453719080235
- Шапаренко Н.О., Арымбаева А.Т., Демидова М.Г., Плюснин П.Е., Колодин А.Н., Максимовский Е.А., Корольков И.В., Булавченко А.И. Эмульсионный синтез и электрофоретическое концентрирование наночастиц золота в растворе бис(2-этилгексил)сульфосукцината натрия в н-декане // Коллоидный Журнал. 2019. Т. 81. № 4. С. 532–540. https://doi.org/10.1134/s0023291219040153
- Kolodin A.N., Syrokvashin M.M., Korotaev E.V. Gold nanoparticle microemulsion films with tunable surface plasmon resonance signal // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. V. 701. P. 134904. https://doi.org/10.1016/j.colsurfa.2024.134904
- Surface Texture (Surface Roughness, Waviness, and Lay), New York: The American Society of Mechanical Engineers. 2003.
- Kwok D.Y., Neumann A.W. Contact angle measurement and contact angle interpretation // Advances in Colloid and Interface Science. 1999. V. 81. № 3. P. 167–249. https://doi.org/10.1016/S0001-8686(98)00087-6
- Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // Journal of Applied Polymer Science. 1969. V. 13. № 8. P. 1741–1747. https://doi.org/10.1002/app.1969.070130815
- Wu S. Polymer interface and adhesion. New York: CRC. 2017. https://doi.org/10.1201/9780203742860
- Bazaka K., Jacob M.V. Solubility and surface interactions of rf plasma polymerized polyterpenol thin films // Mater. Express. 2012. V. 2. № 4. P. 285–293. https://doi.org/10.1166/mex.2012.1086
- Ward H.C. Rough Surfaces (Thomas T.R. Ed.). London: Longman. 1982.
- Rajesh Kumar B., Subba Rao T. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films // Digest Journal of Nanomaterials and Biostructures. 2012. V. 7. № 4. P. 1881–1889.
- Богданова Ю.Г., Должикова В.Д. Метод смачивания в физико-химических исследованиях поверхностных свойств твердых тел // Структура и динамика молекулярных систем. 2008. Т. 2. № 4-А. C. 124–133.
- Sapper M., Bonet M., Chiralt A. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants // LWT. 2019. V. 116. P. 108574. https://doi.org/10.1016/j.lwt.2019.108574
- Bulavchenko A.I., Arymbaeva A.T., Demidova M.G., et al. Synthesis and concentration of organosols of silver nanoparticles stabilized by AOT: emulsion versus microemulsion // Langmuir. 2018. V. 34. № 8. P. 2815–2822. https://doi.org/10.1021/acs.langmuir.7b04071
- Поповецкий П.С., Арымбаева А.Т., Бордзиловский Д.С., Майоров А.П., Максимовский Е.А., Булавченко А.И. Синтез и электрофоретическое концентрирование наночастиц серебра в обратных эмульсиях бис(2-этилгексил)сульфосукцината натрия и получение на их основе проводящих покрытий методом селективного лазерного спекания // Коллоидный журнал. 2019. Т. 81. № 4. С. 501–507. https://doi.org/10.1134/s0023291219040116
- Полеева Е.В., Арымбаева А.Т., Булавченко А.И. Варьирование поверхностного заряда наночастиц золота в мицеллярных системах Span 80, AOT и Span 80 + AOT в н-декане // Журнал физической химии. 2020. Т. 94. № 11. С. 1664–1671. https://doi.org/10.31857/s0044453720110278
- Воробьев С.А., Флерко М.Ю., Новикова С.А., Мазурова Е.В., Томашевич Е.В., Лихацкий М.Н., Сайкова С.В., Самойло А.С., Золотовский Н.А., Волочаев М.Н. Синтез и исследование сверхконцентрированных органозолей наночастиц серебра // Коллоидный журнал. 2024. Т. 86. № 2. C. 193–203. https://doi.org/10.31857/S0023291224020047
- Estrada-Raygoza I.C., Sotelo-Lerma M., Ramírez-Bon R. Structural and morphological characterization of chemically deposited silver films // Journal of Physics and Chemistry of Solids. 2006. V. 67. № 4. P. 782–788. https://doi.org/10.1016/j.jpcs.2005.10.183
- Nayel H.H., AL-Jumaili H.S. Synthesis and characterization of silver oxide nanoparticles prepared by chemical bath deposition for NH3 gas sensing applications // Iraqi Journal of Science. 2020. V. 61. № 4. P. 772–779. https://doi.org/10.24996/ijs.2020.61.4.9
Supplementary files
