Optically аctive films based on AOT-stabilized silver organosol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The composite films based on silver organosol stabilised with anionic surfactant (AOT or bis(2-ethylhexyl)sodium sulphosuccinate) were obtained by the dip-coating method on polystyrene substrates. The films exhibit a surface plasmon resonance signal due to the presence of silver nanoparticles localised in the stabiliser layer. The film formation process is concomitant with the development of silver chain aggregates characterised by an interparticle distance that exceeds the particle diameters. The formation of aggregates does not induce alterations in the optical properties of nanoparticles. The obtained films exhibit a plasmonic signal and no plasmonic delocalisation. Due to varying the number of substrate immersions in the sol, it allows one to change the functional properties of the obtained films (viz., roughness (from 9 ± 2 to 25 ± 4 nm), wettability (from 36 ± 6 to 53 ± 9°), the morphology, the thickness (from 585 ± 13 to 831 ± 28 nm) and surface plasmon resonance signal).

Full Text

Restricted Access

About the authors

V. V. Bocharov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090

V. S. Sulyaeva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090

A. N. Kolodin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: kolodin@niic.nsc.ru
Russian Federation, 3, Ac. Lavrentiev Ave., Novosibirsk, 630090

References

  1. Acharya B., Behera A., Behera S. Optimizing drug discovery: Surface plasmon resonance techniques and their multifaceted applications // Chemical Physics Impact. 2024. V. 8. P. 100414. https://doi.org/10.1016/j.chphi.2023.100414
  2. Olaru A., Bala C., Jaffrezic-Renault N., et al. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis // Critical Reviews in Analytical Chemistry. 2015. V. 45. № 2. P. 97–105. https://doi.org/10.1080/10408347.2014.881250
  3. Libánská A., Špringer T., Peštová L., et al. Using surface plasmon resonance, capillary electrophoresis and diffusion-ordered NMR spectroscopy to study drug release kinetics // Communications Chemistry. 2023. V. 6. № 1. P. 180. https://doi.org/10.1038/s42004-023-00992-5
  4. Gaudreault J., Forest-Nault C., de Crescenzo G., et al. On the use of surface plasmon resonance-based biosensors for advanced bioprocess monitoring // Processes. 2021. V. 9. № 11. P. 1996. https://doi.org/10.3390/pr9111996
  5. Du Y., Qu X., Wang G. Applications of surface plasmon resonance in biomedicine // Highlights in Science, Engineering and Technology. 2022. V. 3. P. 137–143. https://doi.org/10.54097/hset.v3i.702
  6. Das S., Devireddy R., Gartia M.R. Surface plasmon resonance (SPR) sensor for cancer biomarker detection // Biosensors. 2023. V. 13. № 3. P. 396. https://doi.org/10.3390/bios13030396
  7. Janith G.I., Herath H.S., Hendeniya N., et al. Advances in surface plasmon resonance biosensors for medical diagnostics: An overview of recent developments and techniques // Journal of Pharmaceutical and Biomedical Analysis Open. 2023. V. 2. P. 100019. https://doi.org/10.1016/j.jpbao.2023.100019
  8. Qi M., Lv D., Zhang Y., et al. Development of a surface plasmon resonance biosensor for accurate and sensitive quantitation of small molecules in blood samples // Journal of Pharmaceutical Analysis. 2022. V. 12. № 6. P. 929–936. https://doi.org/10.1016/j.jpha.2022.06.003
  9. Mariani S., Minunni M. Surface plasmon resonance applications in clinical analysis // Analytical and Bioanalytical Chemistry. 2014. V. 406. № 9–10. P. 2303–2323. https://doi.org/10.1007/s00216-014-7647-5
  10. Mousavi S.M., Hashemi S.A., Kalashgrani M.Y., et al. Biomedical applications of an ultra-sensitive surface plasmon resonance biosensor based on smart MXene quantum dots (SMQDs) // Biosensors. 2022. V. 12. № 9. P. 743. https://doi.org/10.3390/bios12090743
  11. Liu W., Liu C., Wang J., et al. Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing // Results in Physics. 2023. V. 47. P. 106365. https://doi.org/10.1016/j.rinp.2023.106365
  12. Zhang P., Chen Y.P., Wang W., et al. Surface plasmon resonance for water pollutant detection and water process analysis // TrAC – Trends in Analytical Chemistry. 2016. V. 85. № С. P. 153–165. https://doi.org/10.1016/j.trac.2016.09.003
  13. Tortolini C., Frasconi M., di Fusco M., et al. Surface plasmon resonance biosensors for environmental analysis: General aspects and applications // International Journal of Environment and Health. 2010. V. 4. № 4. P. 305–322. https://doi.org/10.1504/IJENVH.2010.037496
  14. Brulé T., Granger G., Bukar N., et al. A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters // Analyst. 2017. V. 142. № 12. P. 2161–2168. https://doi.org/10.1039/c7an00216e
  15. Zain H.A., Batumalay M., Harith Z., et al. Surface plasmon resonance sensor for food safety // Journal of Physics: Conference Series. 2022. V. 2411. P. 012023. https://doi.org/10.1088/1742-6596/2411/1/012023
  16. Ravindran N., Kumar S., Yashini M., et al. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review // Critical Reviews in Food Science and Nutrition. 2023. V. 63. № 8. P. 1055–1077. https://doi.org/10.1080/10408398.2021.1958745
  17. Balbinot S., Srivastav A.M., Vidic J., et al. Plasmonic biosensors for food control // Trends in Food Science and Technology. 2021. V. 111. P. 128–140. https://doi.org/10.1016/j.tifs.2021.02.057
  18. Ansari M.T.I., Raghuwanshi S.K., Kumar S. Recent advancement in fiber-optic-based SPR biosensor for food adulteration detection – A review // IEEE Transactions on Nanobioscience. 2023. V. 22. № 4. P. 978–988. https://doi.org/10.1109/TNB.2023.3278468
  19. Babu R.S., Colenso H.R., Gouws G.J., et al. Performance enhancement of an Ag–Au bimetallic SPR sensor: A theoretical and experimental study // IEEE Sensors Journal. 2023. V. 23. № 10. P. 10420–10428. https://doi.org/10.1109/JSEN.2023.3265896
  20. Демидова М.Г., Колодин А.Н., Максимовский Е.А., Булавченко А.И. Получение, оптические свойства и смачиваемость двусторонних пленок на основе нанокомпозита серебро–сорбитан моноолеат // Журнал Физической Химии. 2020. Т. 94. № 8. С. 1256–1262. https://doi.org/10.31857/s0044453720080063
  21. Kolodin A.N., Korostova I.V., Sulyaeva V.S., et al. Au@AOT films with adjustable roughness, controlled wettability and plasmon effect // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 629. P. 127375. https://doi.org/10.1016/j.colsurfa.2021.127375
  22. Mahmudin L., Ulum M.S., Farhamsa D., et al. The effect of variation of reducing agent concentration on optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor // Journal of Physics: Conference Series. 2019. V. 1242. P. 012027. https://doi.org/10.1088/1742-6596/1242/1/012027
  23. Silva A.L.C.M.D., Gutierres M.G., Thesing A., et al. SPR biosensors based on gold and silver nanoparticle multilayer films // Journal of the Brazilian Chemical Society. 2014. V. 25. № 5. P. 928–934. https://doi.org/10.5935/0103-5053.20140064
  24. Rodrigues R. da R., Pellosi D.S., Louarn G., et al. Nanocomposite films of silver nanoparticles and conjugated copolymer in natural and nano-form: structural and morphological studies // Materials. 2023. V. 16. № 10. P. 3663. https://doi.org/10.3390/ma16103663
  25. Kolodin A.N., Bulavchenko O.A., Syrokvashin M.M., et al. Conductive silver films with tunable surface properties: thickness, roughness and porosity // Applied Surface Science. 2023. V. 629. № 4. P. 157392. https://doi.org/10.1016/j.apsusc.2023.157392
  26. Полеева Е.В., Арымбаева А.Т., Булавченко О.А., Плюснин П.Е., Демидова М.Г., Булавченко А.И. Получение серебряных электропроводящих пленок из электрофоретических концентратов, стабилизированных сорбитана моноолеатом и бис (2-этилгексил)сульфосукцинатом натрия в н-декане // Коллоидный журнал. 2020. Т. 82. № 3. С. 346–353. https://doi.org/10.31857/s0023291220030076
  27. Колодин А.Н., Коростова И.В., Максимовский Е.А., Арымбаева А.Т., Булавченко А.И. Исследование дисперсности органозолей золота путем использования композитных пленок Au–AOT // Коллоидный журнал. 2020. Т. 82. № 5. С. 576–584. https://doi.org/10.31857/s0023291220050092
  28. Kolodin A.N. Hydrophilization and plasmonization of polystyrene substrate with Au nanoparticle organosol // Surfaces and Interfaces. 2022. V. 34. P. 102327. https://doi.org/10.1016/j.surfin.2022.102327
  29. Поповецкий П.С., Булавченко А.И., Арымбаева А.Т., Булавченко О.А., Петрова Н.И. Синтез и электрофоретическое концентрирование Ag–Cu-наночастиц типа ядро–оболочка в микроэмульсии AOT в н-декане // Журнал Физической Химии. 2019. Т. 93. № 8. С. 1237–1242. https://doi.org/10.1134/s0044453719080235
  30. Шапаренко Н.О., Арымбаева А.Т., Демидова М.Г., Плюснин П.Е., Колодин А.Н., Максимовский Е.А., Корольков И.В., Булавченко А.И. Эмульсионный синтез и электрофоретическое концентрирование наночастиц золота в растворе бис(2-этилгексил)сульфосукцината натрия в н-декане // Коллоидный Журнал. 2019. Т. 81. № 4. С. 532–540. https://doi.org/10.1134/s0023291219040153
  31. Kolodin A.N., Syrokvashin M.M., Korotaev E.V. Gold nanoparticle microemulsion films with tunable surface plasmon resonance signal // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. V. 701. P. 134904. https://doi.org/10.1016/j.colsurfa.2024.134904
  32. Surface Texture (Surface Roughness, Waviness, and Lay), New York: The American Society of Mechanical Engineers. 2003.
  33. Kwok D.Y., Neumann A.W. Contact angle measurement and contact angle interpretation // Advances in Colloid and Interface Science. 1999. V. 81. № 3. P. 167–249. https://doi.org/10.1016/S0001-8686(98)00087-6
  34. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers // Journal of Applied Polymer Science. 1969. V. 13. № 8. P. 1741–1747. https://doi.org/10.1002/app.1969.070130815
  35. Wu S. Polymer interface and adhesion. New York: CRC. 2017. https://doi.org/10.1201/9780203742860
  36. Bazaka K., Jacob M.V. Solubility and surface interactions of rf plasma polymerized polyterpenol thin films // Mater. Express. 2012. V. 2. № 4. P. 285–293. https://doi.org/10.1166/mex.2012.1086
  37. Ward H.C. Rough Surfaces (Thomas T.R. Ed.). London: Longman. 1982.
  38. Rajesh Kumar B., Subba Rao T. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films // Digest Journal of Nanomaterials and Biostructures. 2012. V. 7. № 4. P. 1881–1889.
  39. Богданова Ю.Г., Должикова В.Д. Метод смачивания в физико-химических исследованиях поверхностных свойств твердых тел // Структура и динамика молекулярных систем. 2008. Т. 2. № 4-А. C. 124–133.
  40. Sapper M., Bonet M., Chiralt A. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants // LWT. 2019. V. 116. P. 108574. https://doi.org/10.1016/j.lwt.2019.108574
  41. Bulavchenko A.I., Arymbaeva A.T., Demidova M.G., et al. Synthesis and concentration of organosols of silver nanoparticles stabilized by AOT: emulsion versus microemulsion // Langmuir. 2018. V. 34. № 8. P. 2815–2822. https://doi.org/10.1021/acs.langmuir.7b04071
  42. Поповецкий П.С., Арымбаева А.Т., Бордзиловский Д.С., Майоров А.П., Максимовский Е.А., Булавченко А.И. Синтез и электрофоретическое концентрирование наночастиц серебра в обратных эмульсиях бис(2-этилгексил)сульфосукцината натрия и получение на их основе проводящих покрытий методом селективного лазерного спекания // Коллоидный журнал. 2019. Т. 81. № 4. С. 501–507. https://doi.org/10.1134/s0023291219040116
  43. Полеева Е.В., Арымбаева А.Т., Булавченко А.И. Варьирование поверхностного заряда наночастиц золота в мицеллярных системах Span 80, AOT и Span 80 + AOT в н-декане // Журнал физической химии. 2020. Т. 94. № 11. С. 1664–1671. https://doi.org/10.31857/s0044453720110278
  44. Воробьев С.А., Флерко М.Ю., Новикова С.А., Мазурова Е.В., Томашевич Е.В., Лихацкий М.Н., Сайкова С.В., Самойло А.С., Золотовский Н.А., Волочаев М.Н. Синтез и исследование сверхконцентрированных органозолей наночастиц серебра // Коллоидный журнал. 2024. Т. 86. № 2. C. 193–203. https://doi.org/10.31857/S0023291224020047
  45. Estrada-Raygoza I.C., Sotelo-Lerma M., Ramírez-Bon R. Structural and morphological characterization of chemically deposited silver films // Journal of Physics and Chemistry of Solids. 2006. V. 67. № 4. P. 782–788. https://doi.org/10.1016/j.jpcs.2005.10.183
  46. Nayel H.H., AL-Jumaili H.S. Synthesis and characterization of silver oxide nanoparticles prepared by chemical bath deposition for NH3 gas sensing applications // Iraqi Journal of Science. 2020. V. 61. № 4. P. 772–779. https://doi.org/10.24996/ijs.2020.61.4.9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (264KB)
3. Fig. 1. AFM data: 2- and 3D scans (dashed lines indicate profile recording areas, arrows indicate profile recording directions), profiles and height distribution functions for substrate (a), Ag@AOT films (one (b), two (c), three (d) and five (e) dips in sol) and AOT films (one (e), two (g), three (h) and five (i) dips in reverse micellar solution).

Download (795KB)
4. Fig. 2. Surface tension and wetting behaviour data on polystyrene substrate for water (a), n-decane (b), reverse micellar solution (c), and organosol (d).

Download (138KB)
5. Fig. 3. Ag@AOT film thickness measurements (a - one, b - five immersions in organosol): photograph of the film edge and AFM scan and profile of the film surface edge.

Download (483KB)
6. Fig. 4. Energy dispersive analysis spectra (the inset shows element distributions in % by mass) and SEM photographs (backscattered electron mode) for the substrate (a), Ag@AOT (b) and AOT (c) films (one immersion in sol and reverse micellar solution, respectively). The presence of gold spectral lines in the energy dispersive spectra is due to the application of a conductive layer on the surface of the samples during sample preparation.

Download (727KB)
7. Fig. 5. Distribution maps of surfactant elements in the substrate (a), and Ag@AOT (b) and AOT (c) films (one immersion in sol and reverse micellar solution, respectively).

Download (1MB)
8. Fig. 6. Histograms of the distribution of the contributions of the dispersive and polar components of the surface energy (Esd and Esp, respectively) for polystyrene as well as Ag@AOT and AOT films (five immersions in sol and reverse micellar solution, respectively): calculations performed using Owens-Wendt (a) and Wu (b) models.

Download (121KB)
9. Fig. 7. Absorption spectra of Ag@AOT films and initial sol (marked with a dashed line) (a), as well as the distribution functions of silver nanoparticles in the sol in terms of metallic core diameter (the inset shows a SEM photograph) (b) and hydrodynamic diameter (1 - mode of ‘empty’ micelles, 2 - mode of micelles with nanoparticles) (c).

Download (145KB)

Copyright (c) 2025 Russian Academy of Sciences