LOCAL ATOMIC ENVIRONMENT OF Zn2+ IONS IN A LOW-CONCENTRATION ZnCl2 AQUEOUS SOLUTION: XANES STUDY

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The diverse local environment of zinc ions in a ZnCl2 solution, depending on the symmetry, ligand type, and solution concentration, has been analyzed using the data in the literature. Experimental zinc K-edge XANES spectra in a ZnCl2 aqueous solution with a critically low concentration (10–3 М) have been theoretically analyzed. It is shown that Zn(H2O) complexes with Zn2+ ions in the octahedral coordination environment of water molecules are dominant in this solution.

Негізгі сөздер

Авторлар туралы

V. Lysenko

Faculty of Physics, Southern Federal University, Rostov-on-Don, 344090 Russia

Email: yalovega@sfedu.ru
Россия, Ростов-на-Дону

M. Kremennaya

Faculty of Physics, Southern Federal University, Rostov-on-Don, 344090 Russia

Email: yalovega@sfedu.ru
Россия, Ростов-на-Дону

G. Yalovega

Faculty of Physics, Southern Federal University, Rostov-on-Don, 344090 Russia

Хат алмасуға жауапты Автор.
Email: yalovega@sfedu.ru
Россия, Ростов-на-Дону

Әдебиет тізімі

  1. Sandstead H.H. // Handbook on the Toxicology of Metals, 4th ed., Elsevier, 2014. P. 1369.
  2. Pipan-Tkalec Z., Drobne D., Jemec A. et al. // Toxicology. 2010. V. 269. P. 198. https://doi.org/10.1016/j.tox.2009.08.004
  3. Kula I., Uğurlu M., Karaoğlu H. et al. // Bioresour. Technol. 2008. V. 99. P. 492. https://doi.org/10.1016/j.biortech.2007.01.015
  4. Yusuff A.S., Lala M.A., Thompson-Yusuff K.A. et al. // S. Afr. J. Chem. Eng. 2022. V. 42. P. 138. https://doi.org/10.1016/j.sajce.2022.08.002
  5. Wen D., Fang Z., He H. et al. // Int. J. Chem. React. Eng. 2018. V. 16. P. 20170256. https://doi.org/10.1515/ijcre-2017-0256
  6. Kruh R.F., Standleyc L. // Inorg. Chem. 1962. V. 1. P. 941.
  7. Eastela J., Giaquintap V., March N.H. et al. // Chem. Phys. 1983. V. 76. P. 125.
  8. Parchment O.G., Vincent M.A., Hillier I.H. // J. Phys. Chem. 1996. V. 100. P. 9689.
  9. Pokhrel N., Lamichhane H.P. // J. Sci. Technol. 2018. V. 22. P. 148. https://doi.org/10.3126/jist.v22i2.19607
  10. Yalovega G.E., Kremennaya M.A. // Crystallography Reports. 2020. V. 65. P. 813. https://doi.org/10.1134/S1063774520060395
  11. Фетисов Г.В. Синхротронное излучение. Методы исследования структуры веществ. М.: Физматлит, 2007. 672 с.
  12. Aziz E.F., Ottosson N., Bonhommeau S. et al. // Phys. Rev. Lett. 2009. V. 102. P. 68103. https://doi.org/10.1103/PhysRevLett.102.06810313
  13. Shi W., Punta M., Bohon J. et al. // Genome Res. 2011. V. 21. P. 898. https://doi.org/10.1101/gr.115097.110
  14. Uchikoshi M., Shinoda K. // Struct. Chem. 2019. V. 30. P. 945. https://doi.org/10.1007/s11224-018-1245-7
  15. D’Angelo P., Zitolo A., Ceccacci F. et al. // J. Chem. Phys. 2011. V. 135. P. 15450. https://doi.org/10.1063/1.3653939
  16. D'Angelo P., Barone V., Chillemi G. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 1958. https://doi.org/10.1021/ja015685x
  17. Dreier P., Rabe P. // J. Phys. Colloq. 1986. V. 47. P. C8-809. https://doi.org/10.1051/jphyscol:19868155
  18. Новикова Н.Н., Якунин С.Н., Ковальчук М.В. и др. // Кристаллография. 2019. Т. 64. № 6. С. 931.
  19. Joly Y. // Phys. Rev. B. 2001. V. 63. P. 125120.
  20. Silber H.B., Simon D., Gaizer F. // Inorg. Chem. 1984. V. 23. P. 2844.
  21. Brugger J.L., Liu W., Etschmann B. et al. // Chem. Geol. 2016. V. 447. P. 219.
  22. Alloteau F., Valbi V., Majérus O. et al. // Glass Atmospheric Alteration: Cultural Heritage, Industrial and Nuclear Glasses. Hermann, 2019. P. 192.
  23. Nelson J. // J. Synchrotron Radiat. 2021. V. 28. P. 1119. https://doi.org/10.1107/S1600577521004033
  24. Walker A., Vratsanos M., Kozawa S. et al. // Soft Matter. 2019. V. 15. P. 7596.
  25. Harris D.J., Brodholt J.P., Harding J.H. et al. // Mol. Phys. 2001. V. 99. P. 825. https://doi.org/10.1080/00268970010015588
  26. Paschina G., Piccaluga G., Pinna G. et al. // J. Chem. Phys. 1983. V. 78. P. 5745.
  27. Takahashi M., Tanida H., Kawauchi S. et al. // J. Synchrotron Radiat. 1999. V. 6. P. 278.
  28. Magini M., Licheri G., Paschina G. et al. // X-ray Diffraction of Ions in Aqueous Solution: Hydration and Complex Formation. CRC Press: Boca Raton, FL. 1988. P. 284.
  29. Paschina G., Piccaluga G., Pinna G. et al. // J. Chem. Phys. 1983. V. 78. P. 5745.
  30. Liu W., Borg S.J., Testemale D. et al. // Geochim. Cosmochim. Acta. 2011. V. 75. P. 1227. https://doi.org/10.1016/j.gca.2010.12.002
  31. Powelld H., Gullidgep M.N., Neilsong W. et al. // Molec. Phys. 1990. V. 71. P. 1107.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (74KB)
3.

Жүктеу (395KB)
4.

Жүктеу (172KB)

© Russian Academy of Sciences, 2023