Высокоемкие частицы карбоната кальция как основа pН-чувствительных контейнеров для доксорубицина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Наноструктурированные субмикронные частицы карбоната кальция размерами 500 ± 90 и 172 ± 75 нм синтезированы в ходе массовой кристаллизации в водных растворах с добавлением глицерина, а также смеси полиэтиленгликоля, полисорбата и клеточной среды. Наночастицы CaCO3 : Si : Fe размером 65 ± 15 нм получены методом темплатного синтеза в порах частиц кремнезема. Изучены кристаллическая структура и полиморфизм полученных частиц, определено влияние размера и структуры частиц на эффективность их загрузки противораковым соединением, а также его высвобождение в модельных условиях при разных рН.

Ключевые слова

Об авторах

Т. Н. Паллаева

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Email: trushina.d@mail.ru
Россия, Москва

А. В. Михеев

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Email: trushina.d@mail.ru
Россия, Москва

Д. Н. Хмеленин

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Email: trushina.d@mail.ru
Россия, Москва

Д. А. Еуров

Физико-технический институт им. А.Ф. Иоффе

Email: trushina.d@mail.ru
Россия, Санкт-Петербург

Д. А. Курдюков

Физико-технический институт им. А.Ф. Иоффе

Email: trushina.d@mail.ru
Россия, Санкт-Петербург

В. К. Попова

Институт химической биологии и фундаментальной медицины СО РАН

Email: trushina.d@mail.ru
Россия, Новосибирск

Е. В. Дмитриенко

Институт химической биологии и фундаментальной медицины СО РАН

Email: trushina.d@mail.ru
Россия, Новосибирск

Д. Б. Трушина

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН; Первый Московский государственный медицинский университет им. И.М. Сеченова

Автор, ответственный за переписку.
Email: trushina.d@mail.ru
Россия, Москва; Россия, Москва

Список литературы

  1. Danhier F., Feron O., Préat V. // J. Control. Release. 2010. V. 148. № 2. P. 135. https://doi.org/10.1016/j.jconrel.2010.08.027
  2. Matsumura Y., Maeda H. // Cancer Res. 1986. V. 46. P. 6387.
  3. Pérez-Herrero E., Fernández-Medarde A. // Eur. J. Pharm. Biopharm. 2015. V. 93. P. 52. https://doi.org/10.1016/j.ejpb.2015.03.018
  4. Rodrigues C.F., Alves C.G., Lima-Sousa R. et al. // Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Elsevier. 2020. P. 283. https://doi.org/10.1016/B978-0-12-819666-3.00010-9
  5. Parra Nieto J., Del Cid M.A.G., de Cárcer I.A. et al. // Biotechnol. J. 2021. V. 16. № 2. P. 2000150. https://doi.org/10.1002/biot.202000150
  6. Danhier F. // J. Control. Release. 2016. V. 244. P. 108. https://doi.org/10.1016/j.jconrel.2016.11.015
  7. Rosenblum D., Joshi N., Tao W. et al. // Nat. Commun. 2018. V. 9. № 1. P. 1. https://doi.org/10.1038/s41467-018-03705-y
  8. Nichols J.W., Bae Y.H. // J. Control. Release. 2014. V. 190. P. 451. https://doi.org/10.1016/j.jconrel.2014.03.057
  9. Wilhelm S., Tavares A.J., Dai Q. et al. // Nat. Rev. Mater. 2016. V. 1. P. 1. https://doi.org/10.1038/natrevmats.2016.14
  10. Reshetnyak Y.K. // Clin. Cancer Res. 2015. V. 21. № 20. P. 4502. https://doi.org/10.1158/1078-0432.CCR-15-1502
  11. Nakamura J., Poologasundarampillai G., Jones J.R. et al. // J. Mater. Chem. B. 2013. V. 1. № 35. P. 4446. https://doi.org/10.1039/C3TB20589D
  12. Maleki Dizaj S., Sharifi S., Ahmadian E. et al. // Expert Opin. Drug Deliv. 2019. V. 16. № 4. P. 331. https://doi.org/10.1080/17425247.2019.1587408
  13. Zhang Y., Cai L., Li D. et al. // Nano Res. 2018. V. 11. № 9. P. 4806. https://doi.org/10.1007/s12274-018-2066-0
  14. Sudareva N.N., Popryadukhin P.V., Saprykina N.N. et al. // Cell. Ther. Transplant. 2020. V. 9. № 2. P. 13. https://doi.org/10.18620/ctt-1866-8836-2020-9-2-13-19
  15. Fu J., Leo C.P., Show P.L. // Biochem. Eng. J. 2022. P. 108446. https://doi.org/10.1016/j.bej.2022.108446
  16. Trushina D.B., Borodina T.N., Belyakov S. et al. // Mater. Today Adv. 2022. V. 14. № 2022. P. 100214. https://doi.org/10.1016/j.mtadv.2022.100214
  17. Qiu N., Yin H., Ji B. et al. // Mater. Sci. Eng. C. 2012. V. 32. № 8. P. 2634. https://doi.org/10.1016/j.msec.2012.08.026
  18. Liu S.S., Liu L.J., Xiao L.Y. et al. // J. Mater. Chem. B. 2015. V. 3. № 42. P. 8314. https://doi.org/10.1039/C5TB01692D
  19. Trushina D.B., Bukreeva T.V., Antipina M.N. // Cryst. Growth Des. 2016. V. 16. № 3. P. 1311. https://doi.org/10.1021/acs.cgd.5b01422
  20. Wang A., Yang Y., Zhang X. et al. // Chempluschem. 2016. V. 81. № 2. P. 194. https://doi.org/10.1002/cplu.201500515
  21. Choukrani G., Maharjan B., Park C.H. et al. // Mater. Sci. Eng. C. 2020. V. 106. P. 110226. https://doi.org/10.1016/j.msec.2019.110226
  22. Som A., Raliya R., Tian L. et al. // Nanoscale. Royal Soc. Chem. 2016. V. 8. № 25. P. 12639. https://doi.org/10.1039/C5NR06162H
  23. Som A., Raliya R., Paranandi K. et al. // Nanomedicine. 2019. V. 14. № 2. P. 169. https://doi.org/10.2217/nnm-2018-0302
  24. Lam S.F., Bishop K.W., Mintz R. et al. // Sci. Rep. 2021. V. 11. № 1. P. 9246. https://doi.org/10.1038/s41598-021-88687-6
  25. Popova V., Poletaeva Y., Pyshnaya I. et al. // Nanomaterials. 2021. V. 11. № 11. P. 2794. https://doi.org/10.3390/nano11112794
  26. Eurov D.A., Kurdyukov D.A., Boitsov V.M. et al. // Microporous Mesoporous Mater. 2022. V. 333. P. 111762. https://doi.org/10.1016/j.micromeso.2022.111762
  27. Trofimova E.Y., Kurdyukov D.A., Yakovlev S.A. et al. // Nanotechnology. 2013. V. 24. № 15. P. 155601. https://doi.org/10.1088/0957-4484/24/15/155601
  28. Kamhi S.R. // Acta Cryst. 1963. V. 16. № 8. P. 770. https://doi.org/10.1107/S0365110X63002000
  29. Pokroy B., Kabalah-Amitai L., Polishchuk I. et al. // Chem. Mater. 2015. V. 27. № 19. P. 6516. https://doi.org/10.1021/acs.chemmater.5b01542
  30. Bragg W.L. // Proc. R. Soc. London. A. 1914. V. 89. № 613. P. 468. https://doi.org/10.1098/rspa.1914.0015
  31. Трушина Д.Б., Бородина Т.Н., Сульянов С.Н. и др. // Кристаллография. 2018. Т. 63. № 6. С. 956. https://doi.org/10.1134/S0023476118060309
  32. Borodina T., Marchenko I., Trushina D. et al. // J. Pharm. Pharmacol. 2018. V. 70. P. 1164. https://doi.org/10.1111/jphp.12958
  33. Borodina T.N., Trushina D.B., Marchenko I.V. et al. // BioNanoSci. 2016. V. 6. № 3. P. 261. https://doi.org/10.1007/s12668-016-0212-2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (683KB)
3.

Скачать (850KB)
4.

Скачать (656KB)
5.

Скачать (81KB)

© Российская академия наук, 2023