Digital soil twins as a new technological way of genetic and applied soil science
- Authors: Ivanov A.L.1, Bolotov A.G.1, Kozlov D.N.1, Vasilyeva N.A.1, Vladimirov A.V.1, Vasiliev T.A.1, Khorosheva L.O.1, Dukhanin Y.A.1
-
Affiliations:
- Dokuchaev Soil Science Institute
- Issue: No 6 (2025)
- Pages: 757-770
- Section: GENESIS AND GEOGRAPHY OF SOILS
- URL: https://freezetech.ru/0032-180X/article/view/683497
- DOI: https://doi.org/10.31857/S0032180X25060015
- EDN: https://elibrary.ru/ATSUVF
- ID: 683497
Cite item
Abstract
The concept of creating dynamic virtual images (digital twins) of soils as a component of the biosphere and a fundamental basis for agricultural production is substantiated. The development of this area is relevant in connection with the strengthening of technological sovereignty and structural adaptation of the Russian economy to modern unprecedented challenges. The current state and role of creating digital twins of soils in the conceptual basis of the digital transformation of agriculture are considered. The development of a standard for the formal description of applied problems and data for digital twins of soils made it possible to create a methodology for constructing a data structure and architecture of digital twins of soils of agricultural landscapes based on standards for integrating soil data and mathematical models.
Full Text
##article.viewOnOriginalSite##About the authors
A. L. Ivanov
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
A. G. Bolotov
Dokuchaev Soil Science Institute
Author for correspondence.
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
D. N. Kozlov
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
N. A. Vasilyeva
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
A. V. Vladimirov
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
T. A. Vasiliev
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
L. O. Khorosheva
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
Yu. A. Dukhanin
Dokuchaev Soil Science Institute
Email: bolotov@esoil.ru
Russian Federation, Moscow, 119017
References
- Бондаренко Н.Ф., Жуковский Е.Е., Мушкин И.Г. и др. Моделирование продуктивности агроэкосистем. Л.: Гидрометеоиздат, 1982. 264 с.
- Горохова И.Н., Хитров Н.Б. Распознавание каменистых, песчаных и карбонатных с поверхности почв на юге Приволжской возвышенности (Волгоградская область) по космическим снимкам // Почвоведение. 2023. № 11. С. 1340–1356. https://doi.org/10.31857/S0032180X23600609
- Докучаев В.В. Сочинения. М.: Изд-во АН СССР, 1951. Т. 6. С. 399.
- Жидкин А.П., Рухович Д.И., Мальцев К.А., Королева П.В. Варьирование оценок эрозии почв при использовании разных карт пахотных угодий Белгородской области // Почвоведение. 2024. № 4. С. 621–632. https://doi.org/10.31857/S0032180X24040075
- Иванов А.Л. Болотов А.Г., Десяткин Р.В. и др. Землепользование России в условиях изменения глобального климата и беспрецедентных социально-экономических вызовов: состояние почвенного (земельного) покрова, тенденции изменения, деградация, методология учета, прогнозы. М.: МБА, 2023. 100 с.
- Кирюшин В.И. Методология комплексной оценки сельскохозяйственных земель // Почвоведение. 2020. № 7. С. 871–879. https://doi.org/10.31857/S0032180X20070060
- Кирюшин В.И. Технологическая модернизация земледелия России: предпосылки и условия // Земледелие. 2015. № 6. С. 6–10.
- Кирюшин В.И. Управление плодородием почв и продуктивностью агроценозов в адаптивно-ландшафтных системах земледелия // Почвоведение. 2019. № 9. С. 1130–1139. https://doi.org/10.1134/S0032180X19070062
- Кирюшин В.И., Дубачинская Н.Н., Юрова А.Ю. Комплексная оценка сельскохозяйственных земель на примере Южного Урала // Почвоведение. 2021. № 11. С. 1363–1375. https://doi.org/10.31857/S0032180X21110083
- Кирюшин В.И., Иванов А.Л. Агроэкологическая оценка земель, проектирование адаптивно-ландшафтных систем земледелия и агротехнологий. М.: Российский НИИ информации и технико-экономических исследований по инженерно-техническому обеспечению агропромышленного комплекса, 2005. 784 с.
- Козловский Ф.И. Теория и методы изучения почвенного покрова. М.: ГЕОС, 2003. 536 с.
- Полевой А.Н. Прикладное моделирование и прогнозирование продуктивности посевов. Л.: Гидрометеоиздат, 1988. 319 с.
- Полуэктов Р.А. Динамические модели агроэкосистем. СПб.: Гидрометеоиздат, 1993. 310 с.
- Романенков В.А., Мешалкина Ю.Л., Горбачева А.Ю., Кренке А.Н., Петров И.К., Голозубов О.М., Рухович Д.И. Карты потенциала секвестрации почвенного углерода в пахотных почвах России // Почвоведение. 2024. № 5. С. 677–692. https://doi.org/10.31857/S0032180X24050037
- Савин И.Ю., Терехов А.Г., Амиргалиев Е.Н., Сагатдинова Г.Н. Спутниковый мониторинг засоления орошаемых почв Южного Казахстана // Почвоведение. 2023. № 10. С. 1259–1268. https://doi.org/10.31857/S0032180X23600543
- Сиротенко О.Д. Математическое моделирование водно-теплового режима и продуктивности агроэкосистем. Л.: Гидрометеоиздат, 1981. 163 с.
- Смирнова М.А., Козлов Д.Н. Почвенные свойства как индикаторы параметров водного режима почв (обзор) // Почвоведение. 2023. № 3. С. 353–369. https://doi.org/10.31857/S0032180X22601037
- Чинилин А.В., Виндекер Г.В., Савин И.Ю. VIS-NIR спектроскопия для целей оценки содержания органического углерода почв (метаанализ) // Почвоведение. 2023. № 11. С. 1357–1370. https://doi.org/10.31857/S0032180X23600695
- Шеин Е.В., Рыжова И.М. Математическое моделирование в почвоведении. М.: ИП Маракушев А.Б., 2016. 377 с.
- Шимшек У., Шеин Е.В., Микаилсой Ф., Болотов А.Г., Эрдель Э. Подпочвенное уплотнение: интенсивность проявления в тяжелосуглинистых аллювиальных карбонатных почвах района Ыгдыр (Восточная Турция) // Почвоведение. 2019. № 3. С. 330–334. https://doi.org/10.1134/S0032180X19030109
- Arrouays D., McBratney A., Minasny B., Hempel J., Heuvelink G., MacMillan R., Hartemink A., Lagacherie P., McKenzie N. The GlobalSoilMap project specifications. // GlobalSoilMap: Basis of the Global Spatial Soil Information System, CRC Press, London, 2014. P. 9–12. ISBN 9781138001190
- Ashton K. The “Internet of Things” Thing // RFiD J. 2009. V. 22(7). P. 97–114.
- Biggs A., Holz G., McKenzie D., Doyle R., Cattle S. Pedology: A vanishing skill in Australia // Soil Sci. Policy J. 2018. V. 1. P. 24–35.
- Bolotov A.G., Shein E.V., Makarychev S.V. Water retention capacity of soils in the Altai region // Eurasian Soil Science. 2019. V. 52. № 2. P. 187–192. https://doi.org/10.1134/S1064229319020030
- Canedo A. Industrial IoT lifecycle via digital twins // Proc. Elev. IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign Syst. Synth. CODES ’16, N.Y.: ACM Press, 2016. P. 29. https://doi.org/10.1145/2968456.2974007
- Chergui N., Kechadi M.T., McDonnell M. The Impact of Data Analytics in Digital Agriculture: A Review // Proc. 2020 Int. Multi-Conf. on: Organization of Knowledge and Advanced Technologies (OCTA). Tunis, Tunisia, 6–8 February 2020. P. 1–13. https://doi.org/10.1109/OCTA49274.2020.9151851
- Delgado J.A., Short Jr. N.M., Roberts D.P., Vandenberg B. Big data analysis for sustainable agriculture on a geospatial cloud framework // Front. Sustain. Food Syst. 2019. V. 3. P. 54. https://doi.org/10.3389/fsufs.2019.00054
- Finke P.A. Modeling the genesis of luvisols as a function of topographic position in loess parent material // Quat. Int. 2012. V. 266. P. 3–17. https://doi.org/10.1016/j.quaint.2011.10.016
- Finke P.A., Hutson J.L. Modelling soil genesis in calcareous loess // Geoderma. 2008. V. 145. P. 462–479.https://www.researchgate.net/publication/313179796_Modeling_soil_genesis_in_calcareous_loess
- Fountas S., Sørensen C.G., Vatsanidou A., Liakos V., Tsiropoulos Z., Cavalaris C., Canavari M., Gemtos T., Blackmore S. Farm management information systems: current situation and future perspectives // Comput. Electron. Agric. 2013. V. 115. P. 40–50. https://doi.org/10.1016/j.compag.2015.05.011
- Freebairn D.M., Ghahramani A., Robinson J.B., McClymont D.J. A tool for monitoring soil water using modelling, on-farm data, and mobile technology // Environ. Model Softw. 2018. V. 104. P. 55–63. https://doi.org/10.1016/j.envsoft.2018.03.010
- Gámez Díaz R., Yu Q., Ding Y., Laamarti F., El Saddik A. Digital Twin Coaching for Physical Activities: A Survey // Sensors. 2020. V. 20. P. 5936. https://doi.org/10.3390/s20205936
- Glushakova A.M., Kachalkin A.V., Umarova A.B., Kokoreva A.A., Bolotov A.G., Dunaeva E.A., Maksimova I.A. Yeast Complexes in Urban Soils of Some Southern Cities of Russia (Krasnodar, Maykop, Simferopol, and Sochi) // Microbiology (Russian Federation). 2020. V. 89. P. 603–608. https://doi.org/10.1134/S0026261720050094
- Gorokhova I.N., Khitrov N.B., Tarnopolsky L.A. Identification of surface-carbonate soils and soils with variegated underlying rocks in the South of Volga upland on satellite images // Eurasian Soil Science. 2024. V. 57. P. 1297–1307. https://doi.org/10.1134/S1064229324600763
- Grieves M. Virtually Perfect: Driving Innovative and Lean Products through Product Lifecycle Management. Space Coast Press: Merritt Island, 2011. 370 p.
- Grieves M., Vickers J. Digital twin: manufacturing excellence through virtual factory replication // Transdisciplinary Perspectives on Complex Systems. Springer, 2017. P. 85–113. https://doi.org/10.1007/978-3-319-38756-7_4
- Harms B., Brough D., Philip S., Bartley R., Clifford D., Thomas M., Willis R., Gregory L. Digital soil assessment for regional agricultural land evaluation // Global Food Secur. 2015. V. 5. P. 25–36. https://doi.org/10.1016/j.gfs.2015.04.001
- Hengl T., Mendes de Jesus J. SoilInfo App: Global soil information on your palm // EGU General Assembly Conference Abstracts. European Geosciences Union. 2015. P. 2372.
- Ibanez J.J. Future of soil science // The Future of Soil Science (International Union of Soil Sciences), IUSS, Waginingen, 2006. P. 60–62. ISBN 90-71556+16-6
- Jian J., Du X., Stewart R. D. A database for global soil health assessment // Scientific Data. 2020. V. 7. P. 1–8. https://doi.org/10.1038/s41597-020-0356-3
- Jo S.K., Park D.H., Park H., Kim S.H. Smart livestock farms using digital twin: Feasibility study // Proc. 2018 Int. Conf. on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 17–19 October 2018. P. 1461–1463. https://doi.org/10.1109/ICTC.2018.8539516
- Johnson D.L., Keller E.A., Rockwell T.K. Dynamic pedogenesis: new views on some key soil concepts, and a model for interpreting Quaternary soils // Quat. Res. 1990. V. 33. P. 306–319. https://doi.org/10.1016/0033-5894(90)90058-S
- Johnson D.L., Watson‐Stegner D. Evolution model of pedogenesis // Soil Sci. 1987. V. 143. P. 349–366.
- Khitrov N.B., Kravchenko E.I., Rukhovich D.I., Koroleva P.V. Erosion – accumulative soil cover patterns of dry-steppe agrolandscape, Rostov region // Eurasian Soil Science. 2024. V. 57. P. 1409–1432. https://doi.org/10.1134/S1064229324601045
- Kidd D., Webb M., Malone B., Minasny B., McBratney A. Digital soil assessment of agricultural suitability, versatility and capital in Tasmania // Australia. Geoderma Reg. 2015. V. 6. P. 7–21. https://doi.org/10.1016/j.geodrs.2015.08.005
- Kidd D., Malone B., McBratney A., Minasny B., Webb M. Operational sampling challenges to digital soil mapping in Tasmania, Australia // Geoderma Reg. 2015. V. 4. P. 1–10. https://doi.org/10.1016/j.geodrs.2014.11.002
- Kitchenham B., Charters S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report. Version 2.3. EBSE: Keele, 2007. 57 p. https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
- Kolupaeva V., Kokoreva A., Belik A., Bolotov A., Glinushkin A. Modelling Water and Pesticide Transport in Soil with MACRO 5.2: Calibration with Lysimetric Data // Agriculture (Switzerland). 2022. V. 12. P. 505. https://doi.org/10.3390/agriculture12040505
- Laamarti F., Badawi H.F., Ding Y., Arafsha F., Hafidh B., El Saddik A. An ISO/IEEE 11073 Standardized Digital Twin Framework for Health and Well-Being in Smart Cities // IEEE Access2020. V. 8. P. 105950–105961. https://doi.org/10.1109/ACCESS. 2020.2999871
- Lakeman-Fraser P., Gosling L., Moffat A.J., West S.E., Fradera R., Davies L., Ayamba M.A., Van Der Wal R. To have your citizen science cake and eat it? Delivering research and outreach through Open Air Laboratories (OPAL) // BMC Ecology. 2016. V. 16. P. 57–70. https://doi.org/10.1186/s12898-016-0065-0
- Lawes R., Mata G., Chen Y., Chai J., Donohue R., Butler R., Factor D., Pitman T., Sharman C., Hochman Z. Revolutionising Big Data to help Grain Growers Answer on-farm Questions // GRDC Update Papers. 26 Feb 2018. https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2018/02/revolutionising-big-data-to-help-grain-growers
- Lee E.A., Seshia S.A. Introduction to Embedded Systems, a Cyber-Physical Systems Approach. Version 2.2. MIT Press, 2017. 564 p.
- Madni A., Madni C., Lucero S. Leveraging Digital Twin Technology in Model-Based Systems Engineering // Systems. 2019. V. 7. P. 7. https://doi.org/10.3390/systems7010007
- McDermott P.L., Wikle C.K. Deep echo state networks with uncertainty quantification for spatio-temporal forecasting // Environmetrics. 2019. V. 30. P. e2553. https://doi.org/10.1002/env.2553
- Minasny B., McBratney A.B. A rudimentary mechanistic model for soil formation and landscape development: II. A two‐dimensional model incorporating chemical weathering // Geoderma. 2001. V. 103. P. 161–179. https://doi.org/10.1016/S0016-7061(01)00075-1
- Minasny B., McBratney A.B. Digital soil mapping: A brief history and some lessons // Geoderma. 2016. V. 264. P. 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017
- Monteiro J., Barata J., Veloso M., Veloso L., Nunes J. Towards sustainable digital twins for vertical farming // Proc. 2018 Thirteenth Int. Conf. on Digital Information Management (ICDIM). Berlin, Germany. 24–26 September 2018; P. 234–239. https://doi.org/10.1109/ICDIM.2018.8847169
- Padarian J., McBratney A.B. A new model for intra-and inter-institutional soil data sharing // Soil. 2020. V. 6. P. 89–94. https://doi.org/10.5194/soil-6-89-2020
- Phillips J.D. Progressive and regressive pedogenesis and complex soil evolution // Quaternary Research. 1993. V. 40. P. 169–176. https://doi.org/10.1006/qres.1993.1069
- Pylianidis С., Sjoukje O., Athanasiadis I.N. Introducing digital twins to agriculture // Computers and Electronics in Agriculture. 2021. V. 184. P. 105942. https://doi.org/10.1016/j.compag.2020.105942
- Rossiter D., Past G. Present & future of information technology in pedometrics // Geoderma. 2018. V. 324. P. 131–137. https://doi.org/10.1016/j.geoderma.2018.03.009
- Sarrazin P., Blake D., Feldman S., Chipera S., Vaniman D., Bish D. Field deployment of a portable X-ray diffraction/X-ray flourescence instrument on Mars analog terrain // Powder Diffract. 2005. V. 20. P. 128–133. https://doi.org/10.1154/1.1913719
- Searle R., McBratney A., Grundy M., Kidd D. et al. Digital soil mapping and assessment for Australia and beyond: A propitious future // Geoderma Reg. 2021. V. 24. Article No e00359, ISSN 2352-0094. https://doi.org/10.1016/j.geodrs.2021.e00359
- Semeraro C., Lezoche M., Panetto H., Dassisti M. Digital twin paradigm: A systematic literature review // Computers in Industry. 2021. V. 130. P. 103469. https://doi.org/10.1016/j.compind.2021.103469
- Shein Y.V., Bolotov A.G., Dembovetskii A.V. Soil Hydrology of Agricultural Landscapes: Quantitative Description, Research Methods, and Availability of Soil Water // Eurasian Soil Science. 2021. V. 54. P. 1367–1374. https://doi.org/10.1134/S1064229321090076
- Shein E.V., Bolotov A.G., Dembovetskiy A.V., Kharkhardinov N.A., Vernyuk Yu.I. Using the SWAT model to characterise the water regime of soils in agrolandscapes // Dokuchaev Soil Bulletin. 2023. V. 117. P. 5–22. https://doi.org/10.19047/0136-1694-2023-117-5-22
- Shelley W. mySoil app for smartphones // British Geological Survey. 2012. https://www.bgs.ac.uk/technologies/apps/mysoil-app/
- Shonk J. L., Gaultney L.D., Schulze D.G., Van Scoyoc G.E. Spectroscopic sensing of soil organic matter content // Transactions of the American Society of Agricultural and Biological Engineers. 1991. V. 34. P. 1978–1984. https://doi.org/10.13031/2013.31826
- Sidorov I.A., Gudkov A.G., Chizhikov S.V., Bolotov A.G., Khokhlov N.F., Porokhov I.O. The Own Radiothermal Radiation of the Earth’s Surface Receiving Process Modeling // Radioelektronika, Nanosistemy, Informacionnye Tehnologii. 2022. V. 14. P. 359–372. https://doi.org/10.17725/rensit.2022.14.359
- Silva L., Rodrfguez-Sedano F., Baptista P., Coelho J.H. The Digital Twin Paradigm Applied to Soil Quality Assessment: A Systematic Literature Review // Sensors. 2023. V. 23. P. 1007. https://doi.org/10.3390/s23021007
- Skobelev P.O., Mayorov I.V., Simonova E.V., Goryanin O.I., Zhilyaev A.A., Tabachinskiy A.S., Yalovenko V.V. Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management // J. Phys. Conf. Ser. 2020. V. 1703. P. 012022. https://doi.org/10.1088/1742-6596/1703/1/012022
- Skobelev P., Tabachinskiy A., Simonova E., Lee T.R., Zhilyaev A., Laryukhin, V. Digital twin of rice as a decision-making service for precise farming, based on environmental datasets from the fields // Proc. 2021 Int. Conf. on Information Technology and Nanotechnology (ITNT), Samara, Russia, 20-24 September 2021. P. 1–8. https://doi.org/10.1109/ITNT52450.2021.9649038
- Soderstrom M., Sohlenius G., Rodhe L., Piikki K. Adaptation of regional digital soil mapping for precision agriculture // Precis. Agric. 2016. V. 17. P. 588–607. https://doi.org/10.1007/s11119-016-9439-8
- Sreedevi T.R., Kumar M.B.S. Digital twin in smart farming: a categorical literature review and exploring possibilities in hydroponics // 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). Cochin, India, 2020. P. 120–124. https://doi.org/10.1109/ACCTHPA49271.2020.9213235
- Stenberg В., Viscarra Rossel R.A., Mouazen A.M., Wetterlind, J. Visible and near infrared spectroscopy in soil science // Adv. Agronomy. 2010. V. 107. P. 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7
- Stockmann U., Padarian J., McBratney A., Minasny В., De Brogniez D., Montanarella L., Hong S.Y., Rawlins В.G., Field D.J. Global soil organic carbon assessment // Global Food Security. 2015. V. 6. P. 9–16. https://doi.org/10.1016/j.gfs.2015.07.001
- Stockmann U., Jones E.J., Odeh I.O.A., McBratney A.B. Pedometric treatment of soil attributes // Pedometrics. 2018. P. 115–153. https://doi.org/10.1007/978-3-319-63439-5_5
- Sung Y.M., Kim T. Smart Farm Realization Based on Digital Twin // ICIC Express Lett. 2022. V. 13. P. 421–427. https://doi.org/10.24507/icicelb.13.04.421
- Targulian V.O., Krasilnikov P.V. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance // Catena. 2007. V. 713. P. 373–381. https://doi.org/10.1016/j.catena.2007.03.007
- Tate R.L. Soil microbiology. Wiley-Blackwell, 2020. 592 p. ISBN: 978-0-470-31110-3.
- Tekinerdogan B., Verdouw C. Systems architecture design pattern catalog for developing digital twins // Sensors. 2020. V. 20. P. 5103. https://doi.org/10.3390/s20185103
- Thomas M., Clifford D., Bartley R., Philip S., Brough D., Gregory L., Willis R., Glover M. Putting regional digital soil mapping into practice in tropical Northern Australia // Geoderma. 2015. V. 241–242. P. 145–157. https://doi.org/10.1016/j.geoderma.2014.11.01
- Trienekens J.H., Van der Vorst J.G.A.J., Verdouw C.N. Global food supply chains // Encyclopedia of Agriculture and Food System. Academic Press, 2014. P. 499–517. https://doi.org/10.1016/B978-0-444-52512-3.00118-2
- Van Der Horn E., Mahadevan S. Digital Twin: Generalization, characterization and implementation // Decis. Support Syst. 2021. V. 145. P. 113524. https://doi.org/10.1016/j.dss.2021.113524
- Verdouw C., Kruize J.W. Digital twins in farm management: Illustrations from the FIWARE accelerators SmartAgriFood and Fractals // 7th Asian-Australasian Conf. Precis. Agric, 2017. P. 1–5. https://doi.org/10.5281/zenodo.893662
- Verdouw C., Tekinerdogan B., Beulens A., Wolfert S. Digital twins in smart farming // Agric. Syst. 2021. V. 189. P. 103046. https://doi.org/10.1016/j.agsy.2020.103046
- Viscarra Rossel R.A., Behrens T., Ben-Dor E. et al. A global spectral library to characterize the world’s soil // Earth-Science Reviews. 2016. V. 155. P. 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012
- Viscarra Rossel R.V., McKenzie N., Grundy M. Using Proximal Soil Sensors for Digital Soil Mapping // Digital Soil Mapping. Progress in Soil Science. 2010. V. 2. P. 79–82. https://doi.org/10.1007/978-90-481-8863-5_7
- Wadoux A.M.J.-C., Minasny В., McBratney A.В. Machine learning for digital soil mapping: Applications, challenges and suggested solutions // Earth-Science Reviews. 2020. V. 210. P. 103359. https://doi.org/10.1016/j.earscirev.2020.103359
- Wadoux A.M.J‐C., McBratney A.B. Digital soil science and beyond // Soil Sci. Soc. Am. J. 2021. V. 85.5. P. 1313–1331. https://doi.org/10.1002/saj2.20296
- Wadoux A.M. J.-C., Román-Dobarco M., McBratney A.B. Perspectives on data-driven soil research // Eur. J. Soil Sci. 2021. V. 72. P. 1675–1689. https://doi.org/10.1111/ejss.13071
- Weindorf D.C., Bakr N., Zhu Y. Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications // Adv. Agron. 2014. V. 128. P. 1–45. https://doi.org/10.1016/B978-0-12-802139-2.00001-9
- Yang Y., Viscarra Rossel R.A., Li S., Bissett A., Lee J., Shi Z., Behrens T., Court L. Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions // Soil Biol. Biochem. 2019. V. 129. P. 29–38. https://doi.org/10.1016/j.soilbio.2018.11.005
- Yin C., McKay A. Introduction to modeling and simulation techniques // The 8th Int. Symp. on Comput. Intell. and Ind. Appl. (ISCIIA2018) The 12th China-Japan Int. Work. on Inf. Technol. Control Appl. (ITCA2018) Binjiang International Hotel, Tengzhou, Shandong, China, Nov. 2-6, 2018. P. 1–6. https://www.researchgate.net/publication/332962311_Introduction_to_Modeling_and_Simulation_Techniques.
- Yu D., Zha Y., Shi L., Bolotov A., Tso C.-H.M. Spatiotemporal sampling strategy for characterization of hydraulic properties in heterogeneous soils // Stochastic Environ. Res. Risk Assessm. 2021. V. 35. P. 737–757. https://doi.org/10.1007/s00477-020-01882-1
Supplementary files
