Assessment of changes in Chernobyl contamination and erosion rates within cultivated slopes using soil re-sampling method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transformation of radioactive contamination of agricultural lands with the 137Cs isotope is one of the evidences of soil erosion. Quantitative assessment of changes in radionuclide inventories and the corresponding rates of soil loss can be carried out by repeated sampling of integral soil samples at key sites over long time intervals. Due to the high labor intensity, such studies are relatively few and have not previously been conducted in the zone of intense Chernobyl contamination in Central Russia. The method of repeated sampling (re-sampling) was used in 2023 within the plowed slopes of a small catchment area in the southern part of the Tula region, 26 years after a similar procedure was carried out in 1997. The changes in 137Cs inventories that occurred during this period turned out to be statistically significant, with an average reduction of more than 10%. According to a proportional erosion conversion model using relative changes in 137Cs inventories, the average annual flushing rate was estimated at 11.7 t ha-1 year-1. Such values of soil losses are generally comparable with the previously published results of independent mathematical modeling for this area. Thus, the use of the re-sampling method, including at new sites, is promising for assessing the rate of soil loss, and in addition makes it possible to verify existing erosion models and track long-term trends in the spatial transformation of radioactive contamination.

About the authors

M. M. Ivanov

Institute of Geography of RAS; Lomonosov Moscow State University

Author for correspondence.
Email: ivanovm@bk.ru

Faculty of Geography

Russian Federation, Moscow, 119017; Moscow, 119991

N. N. Ivanova

Lomonosov Moscow State University

Email: ivanovm@bk.ru

Faculty of Geography

Russian Federation, Moscow, 119991

V. N. Golosov

Institute of Geography of RAS; Lomonosov Moscow State University

Email: ivanovm@bk.ru

Faculty of Geography

Russian Federation, Moscow, 119017; Moscow, 119991

A. A. Usacheva

Institute of Geography of RAS; IGEM of RAS

Email: ivanovm@bk.ru
Russian Federation, Moscow, 119017; Moscow, 119017

G. A. Smolina

Moscow Timiryazev Agricultural Academy

Email: ivanovm@bk.ru
Russian Federation, Moscow, 127434

D. V. Fomicheva

Dokuchaev Soil Science Institute

Email: ivanovm@bk.ru
Russian Federation, Moscow, 119017

References

  1. Атлас радиоактивного загрязнения Европейской части России, Белоруссии и Украины / Под ред. Израэля Ю.А. М.: Росгидромет, Роскартография, 1998 142 С.
  2. Барабанов А.Т., Долгов С.В., Коронкевич Н.И., Панов В.И., Петелько А.И. Поверхностный сток и инфильтрация в почву талых вод на пашне в лесостепной и степной зонах Восточно-Европейской равнины // Почвоведение. 2018. № 1. С. 62–69. https://doi.org/10.7868/S0032180X18010069
  3. Белоцерковский М.Ю., Ларионов Г.А. Отчуждение мелкозема с урожаем картофеля и корнеплодов – составная часть потерь почвы // Вестник Моск. ун-та. Сер. 5, география. 1988. № 4. С. 49–54.
  4. Брауде И.Д. Природа пятнистости пахотных почв на склонах и мелиорация // Почвоведение. 1991. № 12. С. 89–97.
  5. Жидкин А.П., Комиссаров М.А., Шамшурина Е.Н., Мищенко А.В. Эрозия почв на Среднерусской возвышенности (обзор) // Почвоведение. 2023. № 2. С. 259–272. https://doi.org/10.31857/S0032180X22600901
  6. Иванов М.М., Цыпленков А.С., Голосов В.Н. Современные тенденции развития эрозионно-аккумулятивных процессов и геоморфологическая связанность потоков наносов в бассейне р. Упы // Эрозия почв и русловые процессы. 2022. Вып. 22. С. 66–97.
  7. Иванова Н.Н., Голосов В.Н., Маркелов М.В. Сопоставление методов оценки интенсивности эрозионно-аккумулятивных процессов на обрабатываемых склонах // Почвоведение. 2000. № 7. С. 898–906.
  8. Иванова Н.Н., Фомичева Д.В., Рухович Д.И., Шамшурина Е.Н. Ретроспективный анализ истории земледельческого освоения и оценка темпов эрозии почв в бассейне р. Локна, Тульская область // Почвоведение. 2023. № 7. С. 872–886. https://doi.org/10.31857/S0032180X22601475
  9. Квасникова Е.В., Стукин Е.Д., Голосов В.Н. Неравномерность загрязнения цезием-137 территорий, расположенных на большом расстоянии от Чернобыльской АЭС // Метеорология и гидрология. 1999. № 2. С. 5–11.
  10. Литвин Л.Ф. География эрозии почв сельскохозяйственных земель России. М.: Академкнига. 2002. 255 С.
  11. Литвин Л.Ф., Голосов В.Н., Добровольская Н.Г., Иванова Н.Н., Кирюхина З.П., Краснов С.Ф. Перераспределение 137Сs процессами водной эрозии почв // Водные ресурсы. 1996. Т. 23. № 3. С. 314–320.
  12. Острова И.В., Силантьев А.Н., Литвин Л.Ф., Голосов В.Н., Шкуратова И.Г. Оценка интенсивности эрозионно-аккумулятивных процессов по содержанию в почве цезия-137 // Вестник Моск. ун-та. Сер. 5, география. 1990. № 5. С. 79–85.
  13. Ратников А.И. Геоморфологические и агропочвенные районы Тульской области // Почвенное районирование СССР. М.: Изд-во Моск. ун-та, 1960. С. 92–115.
  14. Силантьев А.Н., Шкуратова И.Г., Хацкевич Р.Н. Пространственное распределение цезия-137 в почвах европейской части СССР // Почвоведение. 1978. № 4. С. 47–48.
  15. Соболев С.С. Развитие эрозионных процессов на территории Европейской части СССР и борьба с ними. М., 1948. Т. I. 307 с.
  16. Тульский статистический ежегодник статистический сборник // Федеральная служба государственной статистики, Территориальный орган Федеральной службы государственной статистики по Тульской области. Тула: Туластат, 2022. С. 174.
  17. Уоллинг Д., Голосов В.Н., Квасникова Е., Вандеркастель К. Экологические проблемы радионуклидного загрязнения малых водосборных бассейнов // Почвоведение. 2000. № 7. С. 888–897.
  18. Фридман Ш.Д., Квасникова Е.В., Глушко О.В., Голосов В.Н., Иванова Н.Н. Миграция цезия-137 в сопряженных комплексах Среднерусской возвышенности // Метеорология и гидрология. 1997. № 5. С. 45–55.
  19. Arata L., Meusburger K., Bürge A., Zehringer M., Ketterer M.E., Mabit L., Alewell C. Decision support for the selection of reference sites using 137Cs as a soil erosion tracer // Soil. 2017. V. 3. № 3. P. 113–122. https://doi.org/10.5194/soil-3-113-2017
  20. Belyaev V.R., Golosov V.N., Kislenko K.S., Kuznetsova J.S., Markelov M.V. Combining direct observations, modelling, and 137Cs tracer for evaluating individual event contribution to long-term sediment budgets // Sediment Dynamics in Changing Environments. 2008. V. 325. P. 114–122.
  21. Brazier R.E. Quantifying soil erosion by water in the UK: a review of monitoring and modelling approaches // Progress Phys. Geograph. 2004. V. 28. P. 340–365. https://doi.org/10.1191/0309133304pp415ra
  22. Ciszewski D., Grygar T.M. A review of flood-related storage and remobilization of heavy metal pollutants in river systems // Water Air Soil Poll. 2016 V. 227. P. 1–19. https://doi.org/10.1007/s11270-016-2934-8
  23. De Jong E., Kachanoski R.G. The importance of erosion in the carbon balance of prairie soils // Can. J. Soil Sci. 1988. V. 68. P. 111–119.
  24. Fornes W.L., Whiting P.J., Wilson C.G., Matisoff G. Caesium‐137‐derived erosion rates in an agricultural setting: the effects of model assumptions and management practices // Earth Surface Processes and Landforms. 2005. V. 30. № 9. P. 1181–1189. https://doi.org/10.1002/esp.1269
  25. Golosov V.N., Walling D.E., Panin A.V., Stukin E.D., Kvasnikova E.V., Ivanova N.N. The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in Central Russia // Appl. Radiation and Isotopes. 1999. V. 51. P. 341–352. https://doi.org/10.1016/S0969-8043(99)00050-0
  26. Golosov V.N., Walling D.E., Stukin E.D., Nikolaev A.N., Kvasnikova E.V., Panin A.V. Application of a field-portable scintillation detector for studying the distribution of Cs-137 inventories in a small basin in Central Russia // J. Environ. Radioactivity. 2000. V. 48. № 4. P. 79–94.
  27. Golosov V., Ivanov M. Quantitative Assessment of Lateral Migration of the Chernobyl-Derived 137Cs in Contaminated Territories of the East European Plain // Behavior of Radionuclides in the Environment II. Singapore: Springer, 2020. P. 195–226. https://doi.org/10.1007/978-981-15-3568-0_4
  28. Govers G., Vandaele K., Desmet P., Poesen J., Bunte K. The role of tillage in soil redistribution on hillslopes // Eur. J. Soil Scie. 1994. V. 45. P. 469–478.
  29. Horowitz A.J. A Primer on Sediment-Trace Element Chemistry. Lewis: Chelsea, 1991. 134 p.
  30. Kachanoski R.G., de Jong E. Predicting the temporal relationship between soil cesium-137 and erosion rate // J. Environ. Quality. 1984. V. 13. № 2. P. 301–304. https://doi.org/10.2134/jeq1984.00472425001300020025x
  31. Konoplev A.V., Bobovnikova Ts.I. Comparative analysis of chemical forms of long-lived radionuclides and their migration and transformation in the envi- ronment following the Kyshtym and Chernobyl accidents // Proceedings of Seminar on Comparative Assessment of the Environmental Impact of Radio- nuclides Released during Three Major Nuclear Accidents. Luxembourg, 1-5 October 1990. 1990. V. 1. P. 371–396.
  32. Kvasnikova E.V., Stukin E.D., Golosov V.N., Ivanova N.N., Panin A.V. Caesium-137 behaviour in small agricultural catchments on the area of the Chernobyl contamination // Czechoslovak J. Phys. 1999. V. 49. Suppl 1. P. 181–187. https://doi.org/10.1007/s10582-999-0025-4
  33. Lal R. Soil degradation by erosion // Land Degradation Development. 2001. V. 12. № 6. P. 519–539. https://doi.org/10.1002/ldr.472
  34. Li S., Lobb D.A., Kachanoski R.G., McConkey B.G. Comparing the use of the traditional and repeated-sampling-approach of the 137Cs technique in soil erosion estimation // Geoderma. 2011. V. 160. № 3–4. P. 324–335. https://doi.org/10.1016/j.geoderma.2010.09.029
  35. Litvin L.F., Zorina Y.F., Sidorchuk A.Y., Chernov A.V., Golosov V.N. Erosion and sedimentation on the Russian Plain, part 1: contemporary processes // Hydrological Processes. 2003. V. 17. P. 3335–3346. https://doi.org/10.1002/hyp.1390
  36. Lobb D.A., Kachanoski R.G. Modelling tillage erosion in the topographically complex landscapes of southwestern Ontario, Canada // Soil Till. Resю 1999. V. 51. P. 261–277. https://doi.org/10.1016/S0167-1987(99)00042-2
  37. Loughran R.J., Balog R.M. Re‐sampling for Soil‐caesium‐137 to Assess Soil Losses after a 19‐year Interval in a Hunter Valley Vineyard, New South Wales, Australia // Geograph. Res. 2006. V. 44. № 1. P. 77–86. https://doi.org/10.1111/j.1745-5871.2006.00361.x
  38. McHenry J.R., Bubenzer G.D. Field Erosion Estimated from Cs Activity Measurements // Transactions of the ASAE. 1985. V. 28. № 2. P. 480–483.
  39. Moustakim M., Benmansour M., Zouagui A., Nouira A., Benkdad A., Damnati B. Use of caesium-137 re-sampling and excess lead-210 techniques to assess changes in soil redistribution rates within an agricultural field in Nakhla watershed // J. African Earth Sci. 2019. V. 156. P. 158–167. https://doi.org/10.1016/j.jafrearsci.2019.04.017
  40. Owens P.N. Soil erosion and sediment dynamics in the Anthropocene: a review of human impacts during a period of rapid global environmental change // J. Soils Sediments. 2020. V. 20. P. 4115–4143. https://doi.org/10.1007/s11368-020-02815-9.
  41. Owens P.N., Walling D.E. Spatial variability of caesium-137 inventories at reference sites. An example from two contrasting sites in England and Zimbabwe // Appl. Radiation Isotopes. 1996. V. 47. P. 699–707. https://doi.org/10.1016/0969-8043(96)00015-2
  42. Panagos P., Borrelli P., Poesen J. Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process // Sci. Total Environ. 2019. V. 664. P. 487–498. https://doi.org/10.1016/j.scitotenv.2019.02.009
  43. Panin A.V., Walling D.E., Golosov V.N. The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia // Geomorphology. 2001. V. 40. № 3–4. P. 185–204. https://doi.org/10.1016/S0169-555X(01)00043-5
  44. Parsons A.J., Foster I.D. What can we learn about soil erosion from the use of 137Cs? // Earth-Science Reviews. 2011. V. 108. № 1–2. P. 101–113. https://doi.org/10.1016/j.earscirev.2011.06.004
  45. Poesen J. Soil erosion in the Anthropocene: Research needs // Earth Surface Processes Landforms. 2018. V. 43. № 1. P. 64–84. https://doi.org/10.1002/esp.4250
  46. Porto P., Walling D.E., Alewell C., Callegari G., Mabit L., Mallimo N., Meusburger K., Zehringer M. Use of a 137Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy // J. Environ. Radioactivity. 2014. V. 138. P. 137–148. https://doi.org/10.1016/j.jenvrad.2014.08.007
  47. Porto P., Walling D.E., Cogliandro V., Callegari G. Exploring the potential for using 210Pbex measurements within a re-sampling approach to document recent changes in soil redistribution rates within a small catchment in southern Italy // J. Environ. Radioactivity. 2016. V. 164. P. 158–168. https://doi.org/10.1016/j.jenvrad.2016.06.026
  48. Sutherland R.A. Caesium‐137 soil sampling and inventory variability in reference locations: A literature survey // Hydrological Processes. 1996. V. 10. № 1. P. 43–53. https://doi.org/10.1002/(SICI)1099-1085(199601)10:1<43::AID-HYP298>3.0.CO;2-X
  49. Tiessen K.H.D., Li S., Lobb D.A., Mehuys G.R., Rees H.W., Chow T.L. Using repeated measurements of 137Cs and modelling to identify spatial patterns of tillage and water erosion within potato production in Atlantic Canada // Geoderma. 2009. V. 153. № 1-2. P. 104–118. https://doi.org/10.1016/j.geoderma.2009.07.013
  50. Tsymbarovich P., Kust G., Kumani M., Golosov V., Andreeva O. Soil erosion: An important indicator for the assessment of land degradation neutrality in Russia // Int. Soil And Water Conservation Res. 2020. V. 8. № 4. P. 418–429. https://doi.org/10.1016/j.iswcr.2020.06.002
  51. Verstraeten G., Poesen J. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield // Progress Phys. Geograph. 2000. V. 24. № 2. P. 219–251. https://doi.org/10.1177/030913330002400204
  52. Walling D.E., Quine T.A. Calibration of caesium‐137 measurements to provide quantitative erosion rate data // Land Degradation Development. 1990. V. 2. №. 3. P. 161–175. https://doi.org/10.1002/ldr.3400020302
  53. Walling D.E., He Q. Improved models for estimating soil erosion rates from cesium-137 measurements // J. Environ. Quality. 1999 V. 28. P. 611–622. https://doi.org/10.2134/jeq1999.00472425002800020027x
  54. Walling D.E., Golosov V.N., Panin A.V., He Q. Use of radiocaesium to investigate erosion and sedimentation in areas with high levels of chernobyl fallout // Tracers in Geomorphology / Ed. Foster I.D.L. Chichester: Wiley & Sons. 2000. P. 183–200.
  55. Walling D.E., Owens P.N., Carter J., Leeks G.J.L., Lewis S., Meharg A.A., Wright J. Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems // Appl. Geochem. 2003. V. 18. P. 195–220. https://doi.org/10.1016/S0883-2927(02)00121-X
  56. Zhang X.J. Evaluating and improving 137Cs technology for estimating soil erosion using soil loss data measured during 1954–2015 // Earth-Science Rev. 2023. V. 247. 104619. https://doi.org/10.1016/j.earscirev.2023.104619
  57. https://oka.miigaik.ru/
  58. https://wrb.isric.org/documents/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences