The Signal-to-Noise Ratio of a Silicon Tracking System Module for the BM@N Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A module with a double-sided microstrip silicon sensor is the basic element of the silicon tracking system (STS) for the BM@N experiment. The signal-to-noise ratio is the main parameter of the tracking system for a high-energy physics experiment, which is determined by the complex influence of the parameters of the detector and the front-end electronics. An analytical model of various noise sources is presented, and parameters determining the efficiency of charge collection from the detector are discussed. The noise has been measured for several module configurations differing in the sensor size and the length of the signal cable connecting the sensor strips to the input circuits of the front-end electronics. Results of measurements of the signal from a 106Ru β-source are presented. It is shown that the signal-to-noise ratio for STS modules is at least 18.

About the authors

D. V. Dementev

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia

M. O. Shitenkov

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia

V. V. Leontyev

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research; Skobel’tsyn Institute of Nuclear Physics, Moscow State University

Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia; 119991, Moscow, Russia

N. V. Sukhov

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia

A. D. Sheremetev

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia

Yu. A. Murin

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Author for correspondence.
Email: dementiev@jinr.ru
141980, Dubna, Moscow oblast, Russia

References

  1. Senger P., Dementev D., Heuser J., Kapishin M., Lavrik E., Murin Y., Maksymchuk A., Schmidt H.R., Schmidt C., Senger A., Zinchenko A. // Particles. 2019. V. 2. P. 481. https://doi.org/10.3390/particles2040029
  2. Vasiliev S.E., Galavanov A.V., Kapishin M.N., Karjavine V.Yu., Kulish E.M., Lenivenko V.V., Makankin A.M., Maksymchuk A.I., Piyadin S.M., Khabarov S.V. // Phys. Part. Nuclei Lett. 2019. V. 16. P. 859. https://doi.org/10.1134/S1547477119060542
  3. Dementev D., Elsha V., Murin Y., Sheremetev A., Shitenkow M., Sukhov N., Baranov A., Kharlamov P., Merkin M., Lavrik E., Senger A., Senger P. // Phys. Part. Nuclei. 2022. V. 53. № 2. P. 197. https://doi.org/10.1134/S1063779622020265
  4. CBM Collaboration. Ablyazimov T. et al. // Eur. Phys. J. 2017. V. 53. P. 60. https://doi.org/10.1140/epja/i2017-12248-y
  5. Sheremetiev A., Dementev D., Elsha V., Kolozhvari A., Murin Y., Shitenkov M., Sukhov N. // Phys. Part. Nuclei. 2022. V. 53. № 2. P. 377. https://doi.org/10.1134/S1063779622020745
  6. Kasinski K., Rodriguez-Rodriguez A., Lehnert J., Zubrzycka W., Szczygiel R., Otfinowski P., Kleczek R., Schmidt C.J. // Nucl. Instr. and Meth. A. 2018. V. 908. P. 225. https://doi.org/10.1016/j.nima.2018.08.076
  7. Shitenkov M., Dementev D., Voronin A., Kovalev I., Kudryashov I., Kurganov A., Murin Yu. // Phys. Part. Nuclei. 2021. V. 52. P. 826. https://doi.org/10.1134/S1063779621040559
  8. Panasenko I., Schmidt H.R., Lavrik E., Simons C., Schmid C.J. Microcable quality assurance: capacitance measurements. CBM Progress Report 2016. 03 2017. http://repository.gsi.de/record/201318
  9. Spieler H. Semiconductor Detector Systems. Semiconductor Science and Technology. V. 12. Oxford University Press, 2005. P. 34.
  10. Zubrzycka W., Kasinski K. “Noise considerations for the STS/MUCH readout ASIC”. CBM STS-XYTER 2.1 and SPADIC 2.2 Submission Review. https://indico.gsi.de/event/5976/
  11. Rodríguez Rodríguez A. PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, 2020
  12. Lutz G. Semiconductor Radiation Detectors. Berlin, Heidelberg: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-540-71679-2
  13. Spieler H. Semiconductor Detector Systems. Semiconductor Science and Technology. V. 12. Oxford University Press, 2005. P. 17.
  14. https://www.sciencedirect.com/topics/medicine-and-dentistry/ruthenium-106
  15. rd RD48 STATUS REPORT. CERN LHCC 2000-009. LEB Status Report/RD48. 31 December 1999. https://rd48.web.cern.ch/status-reports/RD48-3rd-status-report.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (654KB)
3.

Download (52KB)
4.

Download (229KB)
5.

Download (313KB)
6.

Download (126KB)
7.

Download (47KB)
8.

Download (40KB)
9.

Download (255KB)
10.

Download (106KB)
11.

Download (35KB)

Copyright (c) 2023 Д.В. Дементьев, М.О. Шитенков, В.В. Леонтьев, Н.В. Сухов, А.Д. Шереметьев, Ю.А. Мурин