Contour Method of Tomographic Scanning with Identification of Defects Using Computer Vision

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Studying large objects is one of the most common problems of X-ray tomographic scanning, the solution of which requires the use of more powerful radiation sources, complex expensive mechatronics, and large-sized detector devices, which undoubtedly leads to a multiple increase in the cost of the X-ray unit itself. This article presents one of the possible methods for solving this problem, the essence of which is to scan objects along their contour. This approach can greatly reduce the cost of components of the X-ray unit. At the same time, the approach has a significant limitation: the presence of a large number of artifacts that do not allow detecting defects with sufficient reliability. This problem is proposed to be solved using machine learning.

Sobre autores

A. Ozdiev

National Research Tomsk State University

Email: svi_tsu@mail.ru
634050, Tomsk, Russia

V. Syryamkin

National Research Tomsk State University

Autor responsável pela correspondência
Email: svi_tsu@mail.ru
634050, Tomsk, Russia

Bibliografia

  1. Hiller J., Maisl M., Reindl L.M. // Measurement Science and Technology. 2012. V. 23. P. 085404. https://doi.org/10.1088/0957-0233/23/8/085404
  2. Zhao G., Qin S. // Sensors (Switzerland). 2018. V. 18. https://doi.org/10.3390/s18082524
  3. Sperrin M., Winder J. Scienti c Basis of the Royal College of Radiologists Fellowship. IOP Publishing, 2014. P. 2−50.
  4. Zwanenburg E., Williams M., Warnett J. // Measurement Science and Technology. V. 33. № 1. https://doi.org/10.1088/1361-6501/ac354a
  5. De Chiffre L., Carmignato S., Kruth J.-P., Schmitt R., Weckenmann A. // CIRP Annals – Manufacturing Technology. 2014. V. 63. P. 655. https://doi.org/10.1016/j.cirp.2014.05.011
  6. Cervantes G.A. Technical Fundamentals of Radiology and CT. IOP Publishing, 2016. P. 11−15.
  7. Herman G.T. Chap. Computerized Tomography. UK, Basingstoke: Macmillan Press Ltd., 2002. P. 192.
  8. Ozdiev A., Afornu B., Sednev D. // Research in Nondestructive Evaluation. 2019. V. 30. Iss. 3. P. 179. https://doi.org/10.1080/09349847.2018.1498960
  9. Wenming Guo, Huifan Qu, Lihong Liang // 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Huangshan, China, July 28-30, 2018. IEEE. 2018. doi 20https://doi.org/10.1109/ICNC-FSKD45631.2018
  10. Ozdiev A. // Key Engineering Materials. 2017. V. 743. P. 445. doi: 10.4028/ href='www.scientific.net/KEM.743.445' target='_blank'>www.scientific.net/KEM.743.445
  11. Ozdiev A., Kryuchkov Y., Kroning H. // MATEC Web Conf. V International Forum for Young Scientists “Space Engineering”. 2017. V. 102. Article Number 01029. P. 4. https://doi.org/10.1051/matecconf/201710201029
  12. https://ieeexplore.ieee.org/abstract/document/7984661

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (129KB)
3.

Baixar (160KB)
4.

Baixar (151KB)
5.

Baixar (569KB)
6.

Baixar (307KB)
7.

Baixar (212KB)
8.

Baixar (705KB)
9.

Baixar (760KB)
10.

Baixar (69KB)
11.

Baixar (292KB)
12.

Baixar (371KB)
13.

Baixar (101KB)
14.

Baixar (195KB)
15.

Baixar (166KB)

Declaração de direitos autorais © А.Х. Оздиев, В.И. Сырямкин, 2023