Optimization of a Separationless Three-Phase Oil–Water–Gas Flowmeter of Horizontal Orientation with Dual-Isotope Gamma Densitometers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Information on the characteristics of separationless three-phase oil–water–gas flowmeters of horizontal orientation is presented, probably, for the first time; it is related to the optimization of their design based on experimental studies of single-isotope and dual-isotope gamma densitometers (GD) and a combined conical narrowing device (ND), which consists of two sequentially installed cones of various dimensions. The experiments were carried out on both real oil–gas–salt water mixtures at a TUV SUD NEL test bench (Glasgow) and with model exxsol–gas–fresh water flows at the GET195-2011 standard of multiphase flows at the All-Russia Research Institute for Flow Metering (Kazan) using typical flowmeters with a nominal diameter of DN 100. It is shown that it is advisable to install a γ-densitometer in a cross section with an intermediate diameter of D = 70 mm, use a cone of 70/50 mm as the measuring ND, and use a cone of 100/70 mm to preaccelerate the flow in order to reduce the variety of flow regimes of two-phase and three-phase flows in the measuring ND and in the flow part of the γ-densitometer. This significantly improves the characteristics of the prototype flowmeter. Some of the obtained characteristics are compared with those of the well-known Vx Schlumberger vertical analogue, and designs of variants of an advanced horizontal three-phase flowmeter are presented, which also make it possible to increase its service life and raise the operating pressure.

Sobre autores

A. Filippov

National Research University Moscow Power Engineering Institute

Email: forsc2231@gmail.com
111250, Moscow, Russia

Yu. Filippov

Joint Institute for Nuclear Research

Email: fyp@dubna.ru
141980, Dubna, Moscow oblast, Russia

A. Kovrizhnykh

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: fyp@dubna.ru
141980, Dubna, Moscow oblast, Russia

Bibliografia

  1. Babelli I.M.M. // Proceedings of International Nuclear Conference. Kuala Lumpur, 1997. P. 371.
  2. Atkinson I., Berard M., Hanssen B.-V., Segeral G. // The 19-th International North Sea Flow Measurement Workshop. Oslo, Norwegian, 1999. P. 154.
  3. Bukur D.B., Daly J.G., Patel S.A. // Ind. Eng. Chem. Res. 1996. V. 35. P. 70.
  4. Pan L. PhD. London: Imperial College, 1996.
  5. Filippov Y.P., Panferov K.S. // International Journal of Multiphase Flow. 2012. V. 41. P. 36. https://doi.org/10.1016/j.ijmultiphaseflow.2011.12.005
  6. Филиппов Ю.П., Филиппов А.Ю. // Тепловые процессы в технике. 2021. Т. 13. № 3. С. 98. doi 1034759/tpt-2021-13-398-110
  7. Филиппов А.Ю., Филиппов Ю.П. // Теплоэнергетика. 2022. № 5. С. 18. https://doi.org/10.1134/S0040363622050010
  8. Филиппов А.Ю., Филиппов Ю.П. // Тепловые процессы в технике. 2022. Т. 14. № 5. С. 225. doi 1034759/tpt-2022-14-5-225-240
  9. Pinguest B.G., Miller G.J., Moksnes P.O. // The 26-th International North Sea Flow Measurement Workshop. 21−24 October 2008. TUV NEL Publisher. Paper 3.1. P. 1. https://nfogm.no/wp-content/uploads/2019/02/2008- 08-The-Influence-of-Liquid-Viscosity-on-Multiphase-Flow-Meters-Pinguet-Schlumberger.pdf
  10. Коврижных А.М., Панферов К.С., Филиппов Ю.П., Демьянов А.А., Кепещук Т.В., Поярков С.А.// Автоматизация, телемеханизация и связь в нефтяной промышленности. 2007. № 8. С. 3.
  11. https://www.tuvsud.com/en-gb/industries/chemical-and-process/flow-measurement
  12. The State Primary Special Standard Unit of Mass Flow of Gas-Liquid Mixtures. https://vniir.org/standards/ get-195-2011
  13. Свешников Б.Н., Смирнов С.Н., Филиппов А.Ю., Филиппов Ю.П. // Письма в журнал Физика ЭЧАЯ. 2021. Т. 18. № 1(233). С. 58.
  14. Абрамов Г.С. // Автоматизация, телемеханизация и связь в нефтяной промышленности. 2012. № 1. С. 5.
  15. Filippov Y.P., Kakorin I.D. // Flow Measurement and Instrumentation. 2016. V. 52. P. 163.
  16. Экспериментальные исследования многофазных бессепарационных расходомеров на полигонах TUV SUD NEL и ГЭТ195-2011: протоколы и файлы. Дубна: ОИЯИ, ЛФВЭ, 2012/13.
  17. Filippov Yu.P., Kakorin I.D., Kovrizhnykh A.M., Miklayev V.M. // Physics of Particles and Nuclei Letters. 2017. V. 14. № 4. P. 602. https://doi.org/10.1134/S1547477117040082
  18. Filippov Yu.P., Filippov A.Yu. // Flow Measurement and Instrumentation. 2019. V. 68. P. 101578. doi org/https://doi.org/10.1016/j.flowmeasinst.2019.101758
  19. Filippov Y.P., Romanov S.V., Panferov K.S., Svesh-nikov B.N. // Proc. of the 22-th International Cryogenic Engineering Conf. (ICEC 22) (Seoul, Korea, 2008) Gyeongnam: KIASC, 2009. P. 419. ISBN 9788995713822
  20. Влагомеры поточные моделей L и F. Описание типа средства измерений, 56767-14.pdf.
  21. Какорин И.Д., Филиппов Ю.П. // Измерительная техника. 2013. № 11. С. 33.
  22. ГОСТ Р 8.615-2005. ГСИ. Измерения количества извлекаемых из недр нефти и нефтяного газа. Общие метрологические и технические требования.
  23. Плoтнoмep 804. piezoelectric.ru/Products/Densitometer804/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (127KB)
3.

Baixar (2MB)
4.

Baixar (119KB)
5.

Baixar (95KB)
6.

Baixar (89KB)
7.

Baixar (648KB)
8.

Baixar (70KB)
9.

Baixar (71KB)
10.

Baixar (693KB)

Declaração de direitos autorais © А.Ю. Филиппов, Ю.П. Филиппов, А.М. Коврижных, 2023