Remote Indicator of Fiber End Temperature for Laser Surgery

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a laser scalpel, a method has been developed to control the temperature at the end of its optical fiber with a converter by excitation of ultrasonic pulses of longitudinal and bending waves in it and measuring the delay time of their propagation. The wedge method was used to excite ultrasonic waves at a frequency of 1.1 MHz in the fiber core using a PZT-19 piezoelectric element. Rose alloy was used as the material of the wedge, and a thin wire wound on it was used to fix it on the protective sheath of the optical fiber. Delays of ultrasonic pulses were measured by signal gating for ranges of locations corresponding to reflection from the working end of the optical fiber. When the set temperatures are exceeded, a digital signal is generated for the sound alarm and for the laser control circuit in order to reduce the radiation power.

Sobre autores

V. Kazakov

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: kazak@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia

V. Kamensky

Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University

Autor responsável pela correspondência
Email: kazak@appl.sci-nnov.ru
603005, Nizhny Novgorod, Russia

Bibliografia

  1. Streltsova O.S., Grebenkin E.V., Bredikhin V.I., Yunusova K.E., Elagin V.V. // Sovremennye tehnologii v medicine. 2019. V. 11. № 2. P. 103. https://doi.org/10.17691/stm2019.11.2.15
  2. Romanos G.E., Belikov A.V., Skrypnik A.V., Feldchtein F.I., Smirnov M.Z., Altshuler G.B. // Lasers in surgery and medicine. 2015. V. 47. P. 411. https://doi.org/10.1002/lsm.22360
  3. Streltsova O.S., Grebenkin E.V., Bityurin N.M., Bredikhin V.I., Elagin V.V., Vlasov V.V., Kamensky V.A. // Photonics. 2021. V. 8. P. 452. https://doi.org/10.3390/photonics8100452
  4. Sapogova N., Bredikhin V., Afanasiev A., Kamensky V., Bityurin N. // Photonics. 2021. V. 8. № 10. P. 423. https://doi.org/10.3390/photonics8100423
  5. Schena E., Tosi D., Saccomandi P., Lewis E., Kim T. // Sensors. 2016. V. 16. P. 1144. https://doi.org/10.3390/s16071144
  6. Zhou J., Guo X., Du C., Cao C., Wang X. // Sensors. 2019. V. 19. P. 404. https://doi.org/10.3390/s19020404
  7. Скворцов Л.А., Кириллов В.М. // Квантовая электроника. 2003. Т. 33. № 12. С. 1113. https://doi.org/10.1070/QE2003v033n12ABEH002564
  8. Olabode O.F., Fletcher S., Longsta A.P., Mian N.S. // J. Manuf. Mater. Process. 2019. V. 3. P. 80. https://doi.org/10.3390/jmmp3030080
  9. Алабышев А.П. // Сб. тр.: Новые материалы и технологии в машиностроении. Вып. 20. Брянск: БГИТА, 2014. С. 3–5. http://www.science-bsea.bgita.ru/2014/mashin_2014_20/alabyshev_ras.htm
  10. Горальник А.С., Кульбицкая М.Н., Михайлов И.Г., Ферштат Л.Н., Шутилов В.А. // Акустический журнал. 1972. Т. 18. Вып. 3. С. 391. http://www.akzh.ru/htm/1972_3.htm
  11. Лунин Б.С., Торбин С.Н. // Вестник Московского университета. Сер. 2. Химия. 2000. Т. 41. № 3. С. 172.
  12. Викторов И.А. Физические основы применения ультразвуковых волн Релея и Лэмба в технике. М.: Наука, 1966.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (280KB)
3.

Baixar (107KB)

Declaração de direitos autorais © В.В. Казаков, В.А. Каменский, 2023