Reaction of nitrate ion with formic acid in the presence of uranium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The reaction of nitric acid with formic acid, including uranium-containing solutions, was studied. Empirical equations for the dependence of the induction period duration (τ) on the concentrations of reagents and temperature were determined. The dependence of τ on the concentration of formic acid is exponential. The effect of uranium concentration on τ in denitrated solutions becomes noticeable only at temperatures lower than 60°C. The main factor affecting the completeness of denitration is the molar ratio [formic acid] : [NO3]¯. Starting with the molar ratio of ≥3, uranium-containing solutions are denitrated at 90°C in an hour almost quantitatively. The resulting uranyl formate is partially precipitated. The initial stage of the reaction is accompanied by violent gas evolution. At 90°C, ~80% of the gas volume is released at this stage (about 10 s), whereas at 40°C, only ~10%.

The reaction of nitric acid with formic acid, including uranium-containing solutions, was studied. Empirical equations for the dependence of the induction period duration (τ) on the concentrations of reagents and temperature were determined. The dependence of τ on the concentration of formic acid is exponential. The effect of uranium concentration on τ in denitrated solutions becomes noticeable only at temperatures lower than 60°C. The main factor affecting the completeness of denitration is the molar ratio [formic acid] : [NO3]¯. Starting with the molar ratio of ≥3, uranium-containing solutions are denitrated at 90°C in an hour almost quantitatively. The resulting uranyl formate is partially precipitated. The initial stage of the reaction is accompanied by violent gas evolution. At 90°C, ~80% of the gas volume is released at this stage (about 10 s), whereas at 40°C, only ~10%.

全文:

受限制的访问

作者简介

L. Krasnikov

Khlopin Radium Institute

编辑信件的主要联系方式.
Email: lkrasnikov@khlopin.ru
俄罗斯联邦, 2-i Murinskii pr. 28, St. Petersburg, 194021

A. Lumpov

Khlopin Radium Institute

Email: lkrasnikov@khlopin.ru
俄罗斯联邦, 2-i Murinskii pr. 28, St. Petersburg, 194021

N. Semenova

Khlopin Radium Institute

Email: lkrasnikov@khlopin.ru
俄罗斯联邦, 2-i Murinskii pr. 28, St. Petersburg, 194021

参考

  1. Longstaff J.V.L., Singer K. // J. Chem. Soc. 1954. P. 2610–2617.
  2. Kelm M., Oser B., Drobnik S. // Denitration of Radioactive Liquid Waste / Eds L. Cecille, S. Halaszovich. Dordrecht: Springer, 1986. P. 86–96.
  3. Lee E.H., Hwang D.S., Kim K.W., Kwon S.G., Yoo J.H. // J. Korean Ind. Eng. Chem. 1997. Vol. 8. N l. P. 132–139.
  4. Ando M., Fujita M., Izato Yu-ichiro, Miyake A. // Process Safety Environ. Protect. 2021. Vol. 151. P. 182.
  5. Bradley R.F., Goodlett C.B. // USAEC Report DP-1299. Du Pont de Nemours and Company, 1972. P. 48.
  6. Orebaugh E.G. Denitration of Savannah River Plant Waste Streams. SC (the United States): Savannah River Lab. Aiken, 1976. 26 p.
  7. Kubota M., Yamaguchi I., Nakamura H. // J. Nucl. Sci. Technol. 1979. Vol. 16. P. 426–433.
  8. Lee E.H., Hwang D.S., Kim K.W., Shin Y.J., Yoo J.H. // J. Korean Ind. Eng. Chem. 1995. Vol. 6. N 3. P. 406–411.
  9. Hwang D.S., Lee E.H., Kim K.W., Lee K.I., Park J.H., Yoo J.H., Park S.J. // J. Industrial and Engineering Chemistry. 1999. Vol. 5. N 1. P. 45–51.
  10. Holze K., Finke H.-D., Kelm M., Deckwe W.-D. // Сhem. Ing. Tech. 1979. Vol. 51. N 7. P. 754–755.
  11. Красников Л.В., Лумпов А.А., Мурзин А.А., Семенова Н.А. Патент RU 2494479 C1. 2012.
  12. Алой А.С., Самойлов С.Е., Кольцова Т.И., Металиди М.М., Рябков Д.В., Безносюк В.И. и др. Патент RU 2702095 C1. 2018.
  13. Алой А.С., Абашкин А.Ю., Карпович Н.Ф., Кольцова Т.И., Красников Л.В., Мурзин А.А. и др. // Вопр. радиац. безопасности. 2021. № 3 (103). С. 35–46.
  14. Алой А.С., Абашкин А.Ю., Исмаилов Р.В., Кольцова Т.И., Мурзин А.А., Сапрыкин В.Ф., Хоршев А.А. // Хим. технология. 2023. Т. 24. № 1. С. 26–32.
  15. Алой А.С., Вергазов К.Ю., Горбачев М.В., Давыдов А.В., Исмаилов Р.В., Орлова В.А., Серебрянских Р.А. // Радиохимия. 2024. Т. 66. № 6. С. 528–537.
  16. Cecille L., Kelm M. // Denitration of Radioactive Liquid Waste / Eds L. Cecille, S. Halaszovich. Dordrecht: Springer, 1986. P. 11–31.
  17. Родионов С.А., Сапрыкин В.Ф., Савин Р.А., Металиди М.М., Николаев А.Ю., Красников Л.В., Рябков Д.В. // Тез. докл. VIII Всерос. конф. по радиохимии. Железногорск, 28.09–02.10.2015 г. М.: Наука, 2015. С. 207.

补充文件

附件文件
动作
1. JATS XML
2. Additional materials
下载 (1MB)
3. Fig. 1. Dependence of the completeness of denitration on the molar excess of formic acid. T = 90°C, 1 h

下载 (83KB)
4. Fig. 2. Dependence of the induction period duration on the formic acid concentration. T = 90°C, 1.7–3 mol/l HNO3. exp ‒ experiment; (8) – calculation using equation (8); (9) – calculation using equation (9); (11) – calculation using equation (11)

下载 (100KB)
5. Fig. 3. Dependence of the induction period on the temperature and the amount of “free” nitrate ion. Uranium concentration 600 g/l

下载 (105KB)
6. Fig. 4. Dependence of the induction period on the uranium concentration at a constant total concentration of [NO3 –] 6.72 mol/l. The molar ratio [NO3 –] : [HCOOH] = 1 : 3

下载 (108KB)
7. Fig. 5. Dependence of nitrate ion consumption on the ratio [HCOOH] : [NO3 –] for 1 hour. T = 90°C. Uranium concentration 400 g/l

下载 (115KB)
8. Fig. 6. Dependence of the amount of uranium in the precipitate on its initial concentration in the reaction mixture. T = 90°C, [HCOOH] : [NO3 –] = 4

下载 (114KB)
9. Fig. 7. Dependence of the volume of released gas on the temperature and duration of the reaction. 0.5 mol/l HNO3. Uranium concentration 800 g/l, [HCOOH] : [NO3 –] = 4

下载 (106KB)

版权所有 © Russian Academy of Sciences, 2025