Kinetics of Tc(VII) reduction with diformylhydrazine in a nitric acid solution in the presence of U(VI) ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The Tc(VII) reduction with 1,2-diformylhydrazine in nitric acid solutions in the presence of U(VI) was studied spectrophotometrically. The reduction of Tc(VII) to Tc(IV) through the intermediate form of Tc(V) was found. The optical spectra were decomposed into two components by methods of mathematical processing. Kinetic curves have S-like appearance. It has been suggested that the induction period is associated with the Tc(V) formation. The kinetic equation of the Tc(IV) formation in the studied conditions was obtained. It was found that the rate of Tc(V) formation increases with an increase in the 1,2-diformylhydrazine, U(VI), and initial Tc(VII) concentrations and in the temperature but decreases with an increase in the nitric acid concentration. The reaction rate constants and partial orders of reaction components were found on the basis of the obtained data.

全文:

受限制的访问

作者简介

K. Dvoeglazov

AO Proryv; Bochvar High-Tech Institute of Inorganic Materials

编辑信件的主要联系方式.
Email: dkn@pnproryv.ru
俄罗斯联邦, pl. Akademika Dollezhalya 1, bld. 7, office 307, Moscow, 107140; ul. Rogova 5a, Moscow, 123060

E. Filimonova

Bochvar High-Tech Institute of Inorganic Materials

Email: dkn@pnproryv.ru
俄罗斯联邦, ul. Rogova 5a, Moscow, 123060

L. Podrezova

Bochvar High-Tech Institute of Inorganic Materials

Email: dkn@pnproryv.ru
俄罗斯联邦, ul. Rogova 5a, Moscow, 123060

E. Pavlyukevich

Bochvar High-Tech Institute of Inorganic Materials

Email: dkn@pnproryv.ru
俄罗斯联邦, ul. Rogova 5a, Moscow, 123060

参考

  1. George K., Masters A.J., Livens F.R., Sarsfield M.J., Taylor R.J., Sharrad C.A. // Hydrometallurgy. 2002. Vol. 211. Article 105892.
  2. Puzikov E.A., Zilberman B.Ya., Blazheva I.V., Vakhrushin A.Yu., Goletskii N.D., Kudinov A.S. et al. // Radiochemistry. 2016. Vol. 58. N 4. P. 374–380.
  3. Meyer R.E., Arnold W.D. // Radiochim. Acta. 1991. Vol. 55. P. 19–22.
  4. Kuznetsov V.V., Chotkowski M., Poineau F., Volkov M.A., German K., Filatova E.A. // J. Electroanal. Chem. 2021. Vol. 893. Article 115284. https://doi.org/10.1016/j.jelechem.2021.115284
  5. Rard J.A. Chemical Thermodynamics. Vol. 3: Chemical Thermodynamics of Technetium. France: OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, 1999. 544 p. Цит. по: Обручникова Я.А. Дис. … к.х.н. М.: ИФХЭ РАН, 2013. С. 19–20.
  6. Латимер В.М. Окислительные состояния элементов и их потенциалы в водных растворах. М.: Изд-во иностр. лит., 1964. 398 с.
  7. Колтунов В.С., Марченко В.И., Никифоров А.С., Смелов В.С., Шмидт В.С., Гомонова Т.В. и др. // Атом. энергия. 1986. Т. 60. № 1. С. 35–41.
  8. Zuo C., Yan T., Wang H., Liu F., Liu J., Zhongwei Y. et al. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. P. 2105–2108. https://doi.org/10.1007/s10967-019-06845-7
  9. Liu, F., Wang, H., Jia, Y.-F., Wei, Y., Zhou, Y., // Energy Procedia. 2013. Vol. 39. P. 358–364.
  10. Gong C.-M.S., Lukens W.W., Poineau F., Kenneth R. // Inorg. Chem. 2008. Vol. 47. № 15. P. 6647–6680. https://doi.org/10.1021/ic8000202
  11. Завалина О.А., Двоеглазов К.Н. // VIII Всерос. конф. по радиохимии “Радиохимия-2015”: Тез. докл. Железногорск Красноярского края, 28 сентября–2 октября 2015 г. C. 55.
  12. Колтунов В.С., Журавлева Г.И., Шаповалов М.П. // Радиохимия. 1993. Т. 35, № 6. C. 43–48.
  13. Мелентьев А.Б., Машкин А.Н., Тугарина О.В., Колупаев Д.Н., Зильберман Б.Я., Тананаев И.Г. // Радиохимия. 2011. Т. 53. № 3. С. 219–224.
  14. Колтунов В.С., Зайцева Л.Л., Тихонов М.Ф. // Радиохимия. 1980. Т. 22. № 5. С. 671–678.
  15. Marchenko V.I., Savilova O.A., Dvoeglazov K.N. // Radiochemistry. 2021. Vol. 63. N 3. P. 283–289.
  16. Колтунов В.С., Тейлор Р., Марченко В.И., Двоеглазов К.Н., Колтунов Г.В. // Радиохимия. 2007. T. 49. № 4. C. 327–330.
  17. Машкин А.Н., Беляев Е.М. // Пятая Рос. конф. по радиохимии “Радиохимия-2006”: Тез. докл. Дубна, 23–27 октября 2006 г. Озерск: ПО “Маяк”, 2006. С. 198–199.
  18. Garraway J., Wilson P.D. // J. Less-Common Met. 1984. Vol. 97. P. 191–203.
  19. Спицын В.И., Крючков С.В., Кузина А.Ф. // Радиохимия. 1983. Т. 25. № 4. С. 497–502.
  20. Terence K.J., Thyer A.M., Wilson P.D. // J. Chem. Soc. Dalton Trans. 1993. P. 2601–2605.
  21. Обручникова Я.А. Дис. … к.х.н. М.: ИФХЭ РАН, 2013. 123 с.
  22. Gong C.S., Lukens W.W., Poineau F., Czerwinski K.R. // Inorg. Chem. 2008. Vol. 47. N 15. Р. 6674–6680.
  23. Белая книга ядерной энергетики. Замкнутый ЯТЦ с быстрыми реакторами / Под общ. ред. Е.О. Адамова. М.: НИКИЭТ, 2020. 502 с.
  24. Волк В.И., Двоеглазов К.Н., Виданов В.Л., Сергеева Л.Н. // Тез. докл. XI научно-практической конф. “Дни науки-2011. Ядерно-промышленный комплекс Урала”. Озёрск: ОТИ НИЯУ МИФИ, 2011. Т. 1. С. 64–65.
  25. Vidanov V.L., Dvoeglazov K.N., Volk V.I. // Nuclear Energy at a Crossroads: Int. Conf. GLOBAL’2013. Salt Lake City, Sept. 29–Oct. 03, 2013. Paper 7482.
  26. Volk V., Pavlyukevich E., Dvoeglazov K., Podrezova L., Veselov S. // Book of Abstracts. 9th Int. Conf. on the Chemistry and Physics of the Actinide Elements Actinides 2013. Karlsruhe, Germany, June 21–26, 2013. Paper 1–72.
  27. Bhargvagi G., Sireesha B., Sarala Devi Ch. // Proc. Indian Acad. Sci. (Chem. Sci.). 2003. Vol. 115. N 1. P. 23–28.
  28. Savitzky A., Golay M.J.E. // Anal. Chem. 1964. Vol. 36. N 8. P. 1627–1639.
  29. Wojdyr M. // J. Appl. Crystallogr. 2010. Vol. 43. N 5–1. P. 1126–1128.
  30. Jaumot J., de Juan A., Tauler R. // Chemometr. Intell. Lab. Syst. 2015. Vol. 140. P. 1–12.
  31. De Lathauwer L., De Moor B., Vandewalle J. // SIAM J. Matrix Anal. Appl. 2000. Vol. 21. N 4. P. 1253–1278.
  32. Alekseenko V.N., Dvoeglazov K.N., Marchenko V.I., Alekseenko S.N., Volk V.I., Podrezova L.N. // J. Radioanal. Nucl. Chem. 2015. Vol. 304. N 1. P. 201–206. https://doi.org/10.1007/s10967-014-3882-7
  33. Радушев А.В., Чеканова Л.Г., Гусев В.Ю. Гидразиды и 1,2-диацилгидразины: получение, свойства и применение в процессах концентрирования металлов / Отв. ред. А.А. Федоров. Екатеринбург: Инст. техн. химии УрО РАН, 2010. 139 с.
  34. Zakir M., Sekine T., Takayama T., Kudo H. // J. Nucl. Radiochem. Sci. 2005. Vol. 6. N 3. P. 243–247.
  35. Vichot L., Fattahi M., Musikas C., Grambow B. // Radiochim. Acta. 2003. Vol. 91. N 5. P. 263–272. https://doi.org/10.1524/ract.91.5.263.20312
  36. Sekine T., Narushima H., Kino Y., Kudo H., Lin M., Katsumura Y. // Radiochim. Acta. 2002. Vol. 90. N 9–11. P. 611–616. https://doi.org/10.1524/ract.2002.90.9-11_2002.611
  37. Koltunov V.S. // J. Nucl. Sci. Technol. 2002. November. Suppl. 3. P. 347–350.
  38. Греков А.П. Органическая химия гидразина. Киев: Техника, 1966. 263 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Absorption spectra at different time intervals after the start of the experiment. [Tc] = 45 mg/l, [HNO3] = 0.5 mol/l, [U(VI)] = 20 g/l, [DPG] = 0.5 mol/l, 30°C. Time from the start of the experiment, min: 1 – 10, 2 – 30, 3 – 40, 4 – 60, 5 – 120, 6 – 150 min.

下载 (147KB)
3. Fig. 3. Lorentzian approximation of the spectrum recorded 150 min after the addition of the reducing agent. [Tc(VII)] = 30 mg/l, [HNO3] = 1.0 mol/l, [DPG] = 0.1 mol/l at a temperature of 40°C.

下载 (109KB)
4. Fig. 4. Dependence of optical density at a wavelength of 484 nm on time at [Tc] = 100 mg/l, [HNO3] = 1.0 mol/l, 30°C and the initial concentration of DPG, mol/l: 1 – 0.1, 2 – 0.3, 3 – 0.5, 4 – 0.7, 5 – 0.9.

下载 (113KB)
5. Fig. 5. Comparison of kinetic curves for different compositions of the DPG stock solution, [Tc] = 100 mg/l, [DPG] = 0.5 mol/l, 30°C. Concentration of HNO3 in the DPG stock solution, mol/l: 1 – 0.1, 2 – 0.5, 3 – 1.0.

下载 (95KB)
6. Fig. 6. Dependence of optical density on time at different concentrations of nitric acid. [Tc] = 100 mg/l, [DPG] = 0.5 mol/l, 30°C; [HNO3], mol/l: 1 – 0.5, 2 – 1.0, 3 – 1.4, 4 – 1.7, 5 – 2.2.

下载 (101KB)
7. Fig. 7. Dependence of optical density on time at different concentrations of UO2 2+ ions, [Tc] = 30 mg/l, [HNO3] = 0.5 mol/l, [DPG] = 0.5 mol/l, 30°C; [U], g/l: 1 – 5, 2 – 20, 3 – 40, 4 – 60.

下载 (139KB)
8. Fig. 8. Graphic transformation of kinetic curves in semilogarithmic coordinates at [Tc] = 30 mg/l, [DPG] = 0.5 mol/l, [U] = 20 g/l, temperature 30°C and [HNO3], mol/l: 1 – 0.5, 2 – 0.75, 3 – 1.0.

下载 (112KB)
9. Fig. 2. Simulated spectral profiles of technetium at [Tc] = 30 mg/L, [HNO3] = 0.5 mol/L, [DPG] = 0.5 mol/L and 30°C. 1, 1' – component 1; 2, 2’ – component 2; unprimed 5, primed 20 g/L uranium.

下载 (118KB)

版权所有 © Russian Academy of Sciences, 2025