The influence of uranyl nitrate on exothermic processes in nitric acid solutions of reducing agents

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The thermal stability of nitric acid solutions of acetohydroxamic acid, carbohydrazide, hydrazine nitrate, and their mixtures was studied. The onset temperature of the exothermic reaction was determined, and the thermal effects of the reactions were calculated. The influence of uranyl nitrate on the thermal stability of reducing agents and their mixtures was studied. Comparison of the characteristics of exothermic processes in solutions with and without uranyl nitrate showed that the introduction of uranyl nitrate reduced the intensity of exothermic processes in all the nitric acid solutions studied.

全文:

受限制的访问

作者简介

A. Ob”edkov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
俄罗斯联邦, Leninskii pr. 31, korp. 4, Moscow, 119071

A. Grishaev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bl174@bk.ru
俄罗斯联邦, Leninskii pr. 31, korp. 4, Moscow, 119071

E. Belova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bl174@bk.ru
俄罗斯联邦, Leninskii pr. 31, korp. 4, Moscow, 119071

参考

  1. Marchenko V.I., Alekseenko V.N., Dvoeglazov K.N. // Radiochemistry. 2015. Vol. 57. N 4. P. 366.
  2. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  3. Melent’ev A.B., Mashkin A.N., Tugarina O.V., Kolupaev D.N., Zilberman B.Ya., Tananaev I.G. // Radiochemistry. 2011. Vol. 53. N 3. P. 256.
  4. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2019. Т. 61. N 4. С. 320.
  5. Волк В.И., Двоеглазов К.Н., Алексеенко В.Н., Алексеенко С.Н., Кривицкий Ю.Г. Патент RU 2514947 C2. 2012.
  6. Егоров Г.Ф., Белова Е.В., Тхоржницкий Г.П., Смирнов А.В., Тананаев И.Г. // Вопр. радиац. безопасности. 2010. № 4. С. 22.
  7. Марченко В.И., Двоеглазов К.Н. // Радиохимия. 2020. Т. 62. № 3. С. 202.
  8. Tkac P., Precek M., Paulenova A. // Proc. Global 2009. Paris, France, Sept. 9, 2009. Paper 9122.
  9. Alekseenko V.N., Volk V.I., Marchenko V.I., Dvoeglazov K.N., Bychkov S.I., Bondin V.V. // Radiochemistry. 2012. Vol. 54. N 2. P. 149.
  10. Chung D.Y., Lee E.H. // J. Ind. Eng. Chem. 2006. Vol. 12. N 6. P. 962.
  11. Chung D.Y., Lee E.H. // J. Alloys Compd. 2008. Vol. 451. N 1–2. P. 440.
  12. Volk V.I., Marchenko V.I., Dvoeglazov K.N., Alekseenko V.N., Bychkov S.I., Pavlyukevich E.Yu. et al. // Radiochemistry. 2012. Vol. 54. N 2. P. 143.
  13. Zhang M., Hou X., Qiao J., Yang H. // 17th Radiochemical Conf. Mariánské Lázně, Czech Republic, May 11–16, 2014. P. 97.
  14. Zavalina O.A., Dvoeglazov K.N., Pavlyukevich E.Yu., Stepanov S.I. // Radiochemistry. 2017. Vol. 59. N 5. P. 453.
  15. Емельянов А.С., Родин А.В., Зачиняев Г.М. // Ядерн. и радиац. безопасность. 2021. Т. 100. № 2. С. 7.
  16. Nazin E.R., Zachinyaev G.M., Belova E.V., Emel’yanov A.S., Myasoedov B.F. // Radiochemistry. 2019. Vol. 61. N 6. P. 671.
  17. Nazin E.R., Belova E.V. // Prog. Nucl. Energy. 2022. Vol. 149. ID 104254.
  18. Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009. 195 c.
  19. Significant Incidents in Nuclear Fuel Cycle Facilities: IAEA-TECDOC-867. Vienna: IAEA, 1996.
  20. Usachev V.N., Markov G.S. // Radiochemistry. 2003. Vol. 45. N 1. P. 1.
  21. Obedkov A.S., Kalistratova V.V., Skvortsov I.V., Belova E.V. // Nucl. Eng. Technol. 2022. Vol. 54. N 9. P. 3580.
  22. Izato Y., Shiota K., Miyake A. // J. Phys. Chem. A. 2022. Vol. 126. N 19. P. 2998.
  23. Reed E.J., Rodriguez A.W., Manaa M.R., Fried L.E., Tarver C.M. // Phys. Rev. Lett. 2012. Vol. 109. N 3. ID 038301.
  24. Хмельницкий Л.И. Справочник по взрывчатым веществам. М.: Военная Артиллерийская инженерная акад. им. Ф.Э. Дзержинского, 1962. Ч. II.
  25. Kulyako Yu.M., Perevalov S.A., Trofimov T.I., Malikov D.A., Samsonov M.D., Vinokurov S.E. et al. // Radiochemistry. 2013. Vol. 55. N 6. P. 567.
  26. Obedkov A.S., Kalistratova V.V., Smirnov A.V., Belova E.V. // Prog. Nucl. Energy. 2024. Vol. 168. ID 105044.
  27. Gowland R., Stedman G. // J. Inorg. Nucl. Chem. 1981. Vol. 43. N 11. Р. 2859.
  28. Tkac P., Paulenova A., Gable K.P. // Appl. Spectrosc. 2007. Vol. 61. N 7. P. 772.
  29. Leshok D.Y., Alekseenko V.N., Gavrilov P.M., Alekseenko S.N., Dyachenko A.S., Samoilo A.A. et al. // Radiochim. Acta. 2015. Vol. 103. N 7. P. 477.
  30. Fischer N., Klapötke T.M., Stierstorfer J. // Propell. Explos. Pyrotech. 2011. Vol. 36. N 3. P. 225.
  31. Mohr E.B., Brezinski J.J., Audrieth L.F., Ritchey H.E., McFarlin R.F. // Inorg. Synth. 1953. Vol. 4. P. 32.

补充文件

附件文件
动作
1. JATS XML
2. Additional materials
下载 (564KB)
3. Fig. 1. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – GN, 2 – GN with UN

下载 (90KB)
4. Fig. 2. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC, 2 – AGC with UN

下载 (67KB)
5. Fig. 3. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – AGC with GN, 2 – AGC with GN and UN

下载 (66KB)
6. Fig. 4. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG, 2 – KG with UN

下载 (118KB)
7. Fig. 5. Change in heat flow during heating of solutions in 3.2 mol/l HNO3: 1 – KG with GN, 2 – KG with GN and UN

下载 (103KB)

版权所有 © Russian Academy of Sciences, 2025