Effect of temperature during preactivation of 5% Pd/C and 5% Pd/Al2O3 with deuterium gas on isotope exchange between deuterium water and an organic compound

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

It was demonstrated by the example of serotonin, 3-(N-pyrrolyl)propanoyl-L-histidine, sodium p-phenylbenzoate, and Pro–Gly–Pro that activation of isotope exchange with D2O also occurred when a solution of an organic compound in D2O was mixed with 5% Pd/Al2O3 or 5% Pd/С (after preliminary treatment of catalysts with deuterium gas on heating). When implementing this technique, 2–3 atoms of deuterium were incorporated in serotonin, 4–5 atoms, in Pro–Gly–Pro, 7–8 atoms, in 3-(N-pyrrolyl)propanoyl-L-histidine, and 3–4 atoms, in sodium p-phenylbenzoate. In the latter case, as judged from the composition of the reaction products, atomic deuterium takes part in the activation of isotope exchange with D2O. The participation of atomic deuterium in these reactions follows from the intensification of the degradation of the compounds during deuteration. When using compounds that do not contain labile fragments, isotope exchange with D2O can be activated by keeping the catalyst at room temperature and heating.

全文:

受限制的访问

作者简介

V. Shevchenko

National Research Centre Kurchatov Institute

编辑信件的主要联系方式.
Email: nagaev.img@yandex.ru
俄罗斯联邦, pl. Kurchatova 2, Moscow, 123182

I. Nagaev

National Research Centre Kurchatov Institute

Email: nagaev.img@yandex.ru
俄罗斯联邦, pl. Kurchatova 2, Moscow, 123182

K. Shevchenko

National Research Centre Kurchatov Institute

Email: nagaev.img@yandex.ru
俄罗斯联邦, pl. Kurchatova 2, Moscow, 123182

L. Andreeva

National Research Centre Kurchatov Institute

Email: nagaev.img@yandex.ru
俄罗斯联邦, pl. Kurchatova 2, Moscow, 123182

N. Myasoedov

National Research Centre Kurchatov Institute

Email: nagaev.img@yandex.ru
俄罗斯联邦, pl. Kurchatova 2, Moscow, 123182

参考

  1. Arns S., Moreau A., Young R.N. // J. Label. Compd. Radiopharm. 2010. Vol. 53. N 4. P. 205–207. https://doi.org/10.1002/jlcr.1753
  2. Шевченко В.П., Нагаев И.Ю., Шапошников А.И., Шевченко К.В., Белимов А.А., Баташева С.Н. и др. // Докл. АН. 2018. Т. 483. № 3. С. 274–278. https://doi.org/10.31857/S086956520003247-4
  3. Шевченко В.П., Нагаев И.Ю., Шапошников А.И., Шевченко К.В., Белимов А.А., Юзихин О.С. и др. // Докл. РАН. Химия, науки о материалах. 2020. Т. 491. № 1. С. 5–9. https://doi.org/10.31857/S2686953520020107
  4. Шевченко В.П., Нагаев И.Ю., Мясоедов Н.Ф. Меченные тритием липофильные соединения. М.: Наука, 2003. 246 с.
  5. Stack D.E., Eastman R. // J. Label. Compd. Radiopharm. 2016. Vol. 59. N 12. P. 500–505. https://doi.org/10.1002/jlcr.3440
  6. Pajak M., Palka K., Winnicka E., Kanska M. // J. Label. Compd. Radiopharm. 2016. Vol. 59. N 1. P. 4–8. https://doi.org/10.1002/jlcr.3357
  7. Filer C.N. // J. Label. Compd. Radiopharm. 2017. Vol. 60. N 2. P. 96–109. https://doi.org/10.1002/jlcr.3480
  8. Pajak M., Palka K., Winnicka E., Kanska M. // J. Radioanal. Nucl. Chem. 2018. Vol. 317. P. 643–666. https://doi.org/10.1007/s10967-018-5932-z
  9. Kasumov T., Willard B., Li L., Sadygov R.G., Previs S. Proteome dynamics with heavy water–instrumentations, data analysis, and biological applications // Recent Advances in Proteomics Research / Ed. S. Magdeldin. Japan: IntechOpen, 2015. 166 p. https://doi.org/10.5772/61776
  10. Шевченко В.П., Нагаев И.Ю., Шевченко К.В., Мясоедов Н.Ф. // Радиохимия. 2023. Т. 65. № 4. С. 349–354. https://doi.org/10.31857/S0033831123040068
  11. Chiesa M., Paganini M.C., Spoto G., Giamello E., di Valentin C., del Vitto A., Pacchioni G. // J. Phys. Chem. B. 2005. Vol. 109. N 15. P. 7314–7322. https://doi.org/10.1021/jp044783c
  12. McKenna K.P. // J. Am. Chem. Soc. 2013. Vol. 135. N 50. P. 18859–18865. https://doi.org/10.1021/ja408342z
  13. Zhao J., Li B., Onda K., Feng M., Petek H. // Chem. Rev. 2006. Vol. 106. N 10. P. 4402–4427. https://doi.org/10.1021/cr050173c
  14. Shevchenko V.P., Shevchenko K.V., Nagaev I.Yu., Andreeva L.A. // Radiochemistry. 2024. Vol. 66. N 3. P. 377–382. https://doi.org/10.1134/S1066362224030123
  15. Шевченко В.П., Бадун Г.А., Разживина И.А., Нагаев И.Ю., Шевченко К.В., Мясоедов Н.Ф. // Докл. АН. 2015. Т. 463. N 6. С. 678–683. https://doi.org/10.7868/S0869565215240135
  16. Шевченко В.П., Разживина И.А., Чернышева М.Г., Бадун Г.А., Нагаев И.Ю., Шевченко К.В., Мясоедов Н.Ф. // Радиохимия. 2015. Т. 57. № 3. С. 264–271.
  17. Шевченко В.П., Нагаев И.Ю., Шевченко К.В., Мясоедов Н.Ф. // Радиохимия. 2015. Т. 57. № 4. С. 366–372.
  18. Федорова Т.Н., Стволинский С.Л., Мигулин В.А., Лопачев А.В., Хуторова А.В., Куликова О.И. и др. Патент RU 2777391. 03.08.2022 // Б.И. 2022. № 22.
  19. Baltazar M.T., Dinis-Oliveira R.J., Duarte J.A., Bastos M.L., Carvalho F. // Curr. Med. Chem. 2011. Vol. 18. N 21. P. 3252–3264. https://doi.org/10.2174/092986711796391552
  20. Bhardwaj V., Gumber D., Abbot V., Dhiman S., Sharma P. // RSC Adv. 2015. Vol. 5. P. 15233–15266. https://doi.org/10.1039/C4RA15710A
  21. Самонина Г.Е., Копылова Г.Н., Умарова Б.А. // Нейрохимия. 2008. Т. 25. № 1. С. 128–131.
  22. Шур В.Ю., Самотруева М.А., Мажитова М.В., Тризно Н.Н., Файзиев Р.М., Петренко Л.В., Шур Ю.В. // Фундаментальные исследования. 2014. № 7–3. С. 621–629.
  23. Ubbelohde A.R. // J. Chem. Soc. 1950. P. 1143–1146.
  24. Gibb T.R. // Adv. Chem. Ser. 1963. Vol. 39. N 1. P. 99–110.
  25. Семененко К.Н., Бурнашева В.В., Яковлева Н.А., Ганич Е.А. // Изв. АН. Сер. хим. 1998. № 2. С. 214–217.
  26. Carley A.F., Edwards H.A., Mile B., Roberts M.W., Rowlands C.C., Hancock F.E., Jackson S.D. // J. Chem. Soc., Faraday Trans. 1994. Vol. 90. N 21. P. 3341–3346. https://doi.org/10.1039/FT9949003341
  27. Carley A.F., Edwards H.A., Mile B., Roberts M.W., Rowlands C.C., Jackson S.D., Hancock F.E. // J. Chem. Soc., Chem. Commun. 1994. N 12. P. 1407–1408. https://doi.org/10.1039/C39940001407
  28. Шевченко В.П., Нагаев И.Ю., Мясоедов Н.Ф. // Радиохимия. 2018. Т. 60. № 2. С. 97–127.
  29. Шевченко В.П., Шевченко К.В., Андреева Л.А., Нагаев И.Ю., Мясоедов Н.Ф. // Радиохимия. 2024. Т. 66. № 1. С. 81–87. https://doi.org/10.31857/S0033831124010138
  30. Shevchenko V.P., Nagaev I.Yu., Myasoedov N.F. // Radiochemistry. 2024. Vol. 66. N 3. P. 372–376. https://doi.org/10.1134/S1066362224030111
  31. Шевченко В.П., Нагаев И.Ю., Мясоедов Н.Ф. // Радиохимия. 2010. Т. 52. № 1. С. 84–86.
  32. Гершкович А.А., Кибирев В.К. Химический синтез пептидов. Киев: Наукова думка, 1992. 360 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Isotopic composition of PPG after reaction with D2O (150°C, 30 min) with catalysts activated at room temperature. a – previous method, 5% Pd/Al2O3; b – new method, 5% Pd/Al2O3; c – new method, 5% Pd/C

下载 (168KB)
3. Fig. 2. Isotopic composition of PPG after reaction with D2O (150°C, 30 min) with catalysts activated at 180 and 200°C. a – 180°C, 5% Pd/C; b – 180°C, 5% Pd/Al2O3; c – 200°C, 5% Pd/C; d – 200°C, 5% Pd/Al2O3.

下载 (198KB)
4. Fig. 3. Isotopic composition of serotonin after reaction with D2O (200°C, 30 min): a – 5% Pd/Al2O3–Al2O3–serotonin (5:20:1) mixture, activated at room temperature for 60 min (previous method); b – 5% Pd/Al2O3, activated at 200°C for 10 min followed by vacuumization (new method).

下载 (90KB)
5. Fig. 4. Isotopic composition of serotonin after reaction with D2O (150°C, 30 min, new method): a – 5% Pd/Al2O3, activated at 180°C for 10 min followed by vacuum; b – 5% Pd/Al2O3, activated at 180°C for 10 min without vacuum.

下载 (89KB)
6. Fig. 5. Isotopic composition of Pro–Gly–Pro after reaction with D2O (150°C, 30 min): a – Peptide–5% Pd/Al2O3–Al2O3, D2, 1 h, room temperature (previous method); b – 5% Pd/Al2O3–Al2O3, D2, 1 h, room temperature, then the peptide was added to D2O; c – 5% Pd/Al2O3, D2, 1 h, room temperature, then the peptide was added to D2O.

下载 (150KB)
7. Fig. 6. Isotopic composition of Pro–Gly–Pro after reaction with D2O (150°C, 30 min): a – 5% Pd/Al2O3, D2, 10 min, 200°C, then addition of the peptide to D2O; b – 5% Pd/Al2O3–Al2O3, D2, 10 min, 200°C, then addition of the peptide to D2O; c – 5% Pd/Al2O3, D2, 10 min, 200°C, then vacuum, then addition of the peptide to D2O

下载 (136KB)
8. Fig. 7. Isotopic composition of Pro–Gly–Pro fragments after reaction with D2O: a, g – deuterium in the C-terminal proline; b, d – deuterium in the Gly–Pro fragment; c, e – deuterium in the Pro–Gly fragment. Reaction conditions: a–c – 5% Pd/Al2O3, D2, 10 min, 200°C, then peptide in D2O, 150°C, 30 min; g–e – mixture of 5% Pd/Al2O3–Al2O3–peptide, D2, 1 hour, room temperature, then 150°C, D2O, 30 min.

下载 (291KB)
9. scheme 1

下载 (58KB)
10. scheme 2

下载 (49KB)

版权所有 © Russian Academy of Sciences, 2025