Cesium-137 extraction from nitric acid media with calix[4]arene-crown-6 ether solutions in bis(tetrafluoropropyl) carbonate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The physicochemical and extraction properties of calixarene crown ethers: 1,3-alt-bis(octyloxy)calix[4]arene-crown-6 (II) and its derivatives with o-phenylene (I), methylenepropoxy (IV) and methylene(2,2,3,3-tetrafluoropropoxy) (III) substituents in the crown ether ring, were studied. Solutions of compound II in bis(2,2,3,3-tetrafluoropropyl) carbonate (BK-1) effectively extract cesium from 3 mol/L nitric acid already at a concentration of 0.001 mol/L. The introduction of substituents into the crown ether ring significantly reduces the efficiency of cesium extraction, but increases the solubility of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate. The data on the solubility of calixarene crown ethers in water and 3 mol/L nitric acid, the distribution between the organic and aqueous phases, and the rate of interaction with nitric acid were obtained. Calixarene crown ether I with an o-phenylene substituent reacts with 3 mol/L nitric acid approximately 2 times faster than dibenzo-21-crown-7. The other calixarene crown ethers studied do not react with nitric acid under the similar conditions. Quantum chemical modeling, including optimization of the structure geometry and calculation of vibrational frequencies, was performed for the molecules of calixarene crown ethers, DB21C7 and their complexes with the cesium cation. The calculated ΔG0 values for the complexation of ligands with the cesium cation correlate well with the experimental lgDCs (except for compound III with a fluorinated substituent). Solutions of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate exhibit selectivity for cesium and do not extract 152Eu and 241Am from nitric acid media.

Texto integral

Acesso é fechado

Sobre autores

T. Aleksandrov

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034

E. Babitova

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034

A. Blokhin

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: mkaravan@khlopin.ru
Rússia, Bolshoi pr. V.O. 31, St. Petersburg, 199004

A. Brechalov

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034

V. Eremin

St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

Yu. Ermolenko

St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

M. Karavan

Khlopin Radium Institute; St. Petersburg State University

Autor responsável pela correspondência
Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034

E. Kenf

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021

T. Maltseva

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021

A. Ostras'

St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

V. Timoshenko

St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

L. Tkachenko

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021

I. Smirnov

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
Rússia, 2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034

Bibliografia

  1. Стратегия развития ядерной энергетики России. М.: Росатом, 2023. 64 с.
  2. Логунов М.В., Ворошилов Ю.А., Бабаин В.А., Скобцов А.С. // Радиохимия. 2020. Т. 62. № 6. С. 463.
  3. Grüner B., Rais J., Seluckỳ P., Lučaníková M. // Boron Science: New Technologies and Applications / Ed. N.S. Hosmane. CRC, 2016. P. 463.
  4. Ворошилов Ю.А., Логунов М.В., Смольянихин К.В., Яковлев Н.Г. // Вопр. радиац. безопасности. 2013. № 2. P. 23.
  5. Кощеева А.М., Родин А.В., Ананьев А.В. // Радиохимия. 2023. Т. 65. № 4. С. 303–309.
  6. Smirnov I.V., Karavan M.D., Kenf E.V., Tkachenko L.I., Timoshenko V.V., Brechalov A.A. et al. // Solvent Extr. Ion Exch. 2022. Vol. 40. N 7. P. 756.
  7. Mátel Ľ., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183.
  8. Ripon R.I., Begum Z.A., Rahman I.M.M. // Microchem. J. 2024. Vol. 199. Article 110161.
  9. Ungaro R., Casnati A., Ugozzoli F., Pochini A., Dozol J.-F., Hill C., Rouquette H. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1506.
  10. Roach B.D., Neil W.J., Duncan N.C., Laetitia H. // Solvent Extr. Ion Exch. 2014. Vol. 33. N 2. P. 134.
  11. Simonnet M., Miyazaki Y., Suzuki S., Yaita V. // Solvent Extr. Ion Exch. 2019. Vol. 37. P. 81.
  12. Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328.
  13. Kumar V., Sharma J.N., Achuthan P.V., Hubli R.C. // J. Radioanal. Nucl. Chem. 2014. Vol. 299. P. 1547.
  14. Khan P.N., Pahan S., Sengupta A., Tessy V., Singhadeb A.K., Ali S.M. // J. Mol. Liq. 2024. Vol. 397. Article 124064.
  15. Jagasia P., Mohapatra P.K., Dhami P.S., Patil A.B., Adya V.C., Sengupta A. et al. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. N 2. P. 1087.
  16. Wang J., Chen J., Shan J. // Solvent Extr. Ion Exch. 2015. Vol. 33. P. 249.
  17. Zhang A., Hu Q. // Sep. Sci. Technol. 2017. Vol. 52. N 10. P. 1670.
  18. Patra K., Sengupta A., Mishra R.K., Mittal V.K., Valsala T.P., Kaushik C.P. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 3. P. 1473.
  19. Babain V., Alyapyshev M., Еkberg С., Todd T. // Solvent Extr. Ion Exch. 2023. Vol. 41. N 3. P. 253.
  20. Percec V., Bera T.K., De B.B., Sanai Y., Smith J., Holerca M.N., Barboiu B. // J. Org. Chem. 2001. Vol. 66. P. 2104.
  21. Adamo C., Barone V. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158.
  22. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
  23. Leininger T., Nicklass A., Kuechle W., Stoll H., Dolg M., Bergner A. // Chem. Phys. Lett. 1996. Vol. 255. P. 274.
  24. Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. Vol. 147. Article 034112.
  25. Barone V., Cossi M. // J. Phys. Chem. A. 1998. Vol. 102. N 11. P. 1995.
  26. Chemcraft–graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
  27. Smirnov I.V., Stepanova E.S., Tyupina M.Y., Ivenskaya N.M., Zaripov S.R., Kleshnina S.R. et al. // Macroheterocycles. 2017. Vol. 10. N 2. P. 196.
  28. Sharma J.N., Kumar A., Kumar V., Pahan S., Janardanan C., Tessi V., Wattal P.K. // Sep. Purif. Technol. 2014. Vol. 135. P. 176.
  29. Jagasia P., Ansari S.A., Raut D.R., Dhami P.S., Gandhi P.M., Kumar A., Mohapatra P.K. // Sep. Purif. Technol. 2016. Vol. 170. P. 208.
  30. Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. // J. Membr. Sci. 2013. Vol. 429. P. 197.
  31. Patra K., Sadhu B., Sengupta A., Patil C.B., Mishra R.K., Kaushik C.P. // RSC Adv. 2021. Vol. 11. P. 21323.
  32. Jagasia P., Mohapatra P.K., Dhami P.S., Gandhi P.M., Wattal P.K. // Sep. Sci. Technol. 2014. Vol. 49. P. 2151.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Supplementary
Baixar (4MB)
3. Fig. 1. Structural formulas of synthesized calixarene crown ethers.

Baixar (267KB)
4. Fig. 2. UV absorption spectra of solutions of calixarene crown ethers in DCE at a concentration of 10–4 mol/l.

Baixar (52KB)
5. Fig. 3. Calibration dependences of the optical density of standard solutions relative to DCE on the concentration of calixarene crown ethers.

Baixar (157KB)
6. Fig. 4. UV spectra of the reaction products of a 0.01 mol/l solution of DB21K7 in BK-1 with 3 mol/l nitric acid.

Baixar (85KB)
7. Fig. 5. UV spectra of a 0.001 mol/L solution of calixarene crown ether I in BK-1 before and after interaction with 3 mol/L nitric acid.

Baixar (116KB)
8. Fig. 6. Distribution of the intensity of light scattered at an angle of 60° by size for freshly prepared solutions of calixarene crown ethers in BK-1.

Baixar (145KB)
9. Fig. 7. Distribution of the intensity of light scattered at an angle of 60° by size for calixarene crown ether samples (2 days after contact with 1 mol/L HNO3).

Baixar (133KB)
10. Fig. 8. Extraction of 137Cs from nitric acid solutions with 0.001 mol/l solutions of calixarene crown ethers in BK-1.

Baixar (80KB)
11. Fig. 9. Dependence of cesium distribution coefficients on the concentration of calixarene crown ethers in BK-1 during extraction from 3 mol/l HNO3.

Baixar (89KB)
12. Fig. 10. Molecular structures of calixarene crown ethers II and III and their complexes with cesium II Cs+ and III Cs+.

Baixar (121KB)
13. Fig. 11. Dependence of the logarithm of the cesium distribution coefficient –lgDCs (SKA-KE 0.001 mol/l; СHNO3 = 1 mol/l) on the calculated Gibbs energy –ΔG0 of complex formation.

Baixar (59KB)
14. Table 5. Cs–Oi distance in calixarene crown ether complexes with cesium in BK-1 solution (Å)

Baixar (209KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025