Changes in the intrinsic stimulated intense picosecond emission of the AlxGa1–xAs-GaAs-AlxGa1–xAs heterostructure due to the return of those part of the emission that was reflected from the end of the heterostructure to the active region

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Quenching of the generation of the intrinsic stimulated intense picosecond emission of the AlxGa1–xAs-GaAs-AlxGa1–xAs heterostructure, emerging from its end, has been detected. Quenching occurs when those part of the emission reflected from the end of the heterostructure returns to the active region. This new effect allows decreasing the emission duration by up to 7.5 times.

全文:

受限制的访问

作者简介

N. Ageeva

Kotel’nikov Institute of Radioengeneering and Electronics RAS

Email: bil@cplire.ru
俄罗斯联邦, Mokhovaya St., 11, build. 7, Moscow, 125009

I. Bronevoi

Kotel’nikov Institute of Radioengeneering and Electronics RAS

编辑信件的主要联系方式.
Email: bil@cplire.ru
俄罗斯联邦, Mokhovaya St., 11, build. 7, Moscow, 125009

A. Krivonosov

Kotel’nikov Institute of Radioengeneering and Electronics RAS

Email: bil@cplire.ru
俄罗斯联邦, Mokhovaya St., 11, build. 7, Moscow, 125009

参考

  1. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // ЖЭТФ. 2022. Т. 162. № 6. С. 1018.
  2. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2023. Т. 68. № 3. С. 211.
  3. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2024. Т. 69. № 2. С. 187.
  4. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2024. Т. 69. № 7. С. 678.
  5. Агеева Н.Н., Броневой И.Л., Забегаев Д.Н., Кривоносов А.Н. // ФТП. 2017. Т. 51. № 5. С. 594.
  6. Joannopoulos J.D., Johnson S.G., Meade R.D., Winn J.N. Photonic Crystals: Molding the Flow of Light. Princeton: Univ. Press, 2011.
  7. Marple D.T.F. // J. Appl. Phys. 1964. V. 35. № 4. P. 1241.
  8. Ривлин Л.А. Динамика излучения полупроводниковых квантовых генераторов. М.: Сов. радио, 1976.
  9. Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989.
  10. Калафати Ю.Д., Кокин В.А. // ЖЭТФ. 1991. Т. 99. № 6. С. 1793.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental setup (the figure is identical to Fig. 1 in [2]).

下载 (128KB)
3. Fig. 2. Time-integrated spectra Ws(ħωs) of s-radiation at different shifts δY of the focal spot of the pump beam and energies Wex of the picosecond pump pulse: (a) Wex = 1.18 rel. units; δY = 60 μm (1), δY = 188 μm (2), δY = 502 μm (3); (b) Wex = 4.36 rel. units; δY = 30 μm (1), δY = 446 μm (2). The spectra in Fig. 2a and 2b were measured using diffraction gratings of 300 lines/mm and 1200 lines/mm, respectively.

下载 (141KB)
4. Fig. 3. Chronograms IΣ(t) of the spectrum-integrated s-radiation at Wex = 4.36 rel. units and different δY : (a) – 68 μm; (b) – 98 μm; (c) – 252 μm (curve 1, the chronogram Iex(t) of the pump pulse is also shown by curve 2); (d) – 444 μm.

下载 (194KB)
5. Fig. 4. Dependence on δY at Wex = 4.36 rel. units: the duration of s-radiation at half-maximum T1/2 (1); the amplitude A (2) and the area S (3) of the chronogram of s-radiation. Solid lines in Figs. 4 and 5 are drawn for clarity.

下载 (123KB)
6. Fig. 5. Dependence on Wex at δY = 478 μm: the duration T1/2 (1) of s-radiation; area S (2) and amplitude A (3) of the chronogram of s-radiation; characteristic time τ (4) of decay of the s-radiation intensity.

下载 (121KB)
7. Fig. 6. Schematic representation of the change in time (at the locations of the active region indicated in the text) of the intensity of: (a) s-radiation (curve 1), pump radiation (curve 2) and r-radiation (curve 3), all at δY = –68 μm; (b) s-radiation (curve 1) at δY = –68 μm; pump radiation (curve 2), r-radiation (curve 3) and s-radiation (curve 4) at δY = 92 μm; (c) s-radiation (curve 1) at δY = –68 μm; pump radiation (curve 2), r-radiation (curve 3) and s-radiation (curve 4) at δY = 444 μm.

下载 (413KB)
8. Fig. 7. Chronogram IΣ(t) of radiation at Wex = 4.36 rel. units after shifting the focal spot of the pump beam by 506 μm along the GaAs epitaxial layer, perpendicular to the Y direction (curve 1) and chronogram Iex(t) of the pump pulse (curve 2).

下载 (74KB)
9. Fig. 8. Estimate of the radius R of the active region at δY = 348 μm, 444 μm, 540 μm, based on the interpretation of the quenching of s-radiation.

下载 (44KB)

版权所有 © Russian Academy of Sciences, 2025