Математическая модель формирования льда в атмосферных условиях, характеризующихся наличием ледяных кристаллов и смеси фаз
- 作者: Горячев П.А.1, Бурцев С.А.2
-
隶属关系:
- ФАУ Центральный институт авиационного моторостроения им. П.И. Баранова
- ФГБОУ ВО Московский государственный технический университет им. Н.Э. Баумана
- 期: 卷 63, 编号 1 (2025)
- 页面: 91-99
- 栏目: Heat and Mass Transfer and Physical Gasdynamics
- URL: https://freezetech.ru/0040-3644/article/view/689143
- DOI: https://doi.org/10.31857/S0040364425010142
- ID: 689143
如何引用文章
详细
Предложена усовершенствованная модель обледенения в атмосферных условиях, характеризующихся наличием ледяных кристаллов и смеси фаз, позволяющая повысить точность выполнения трехмерных расчетов процесса обледенения элементов авиационной техники, включая проточную часть компрессора двигателя. Выполнено сравнение результатов расчета по предложенной модели с результатами расчетов по программе IGLOO2D и с экспериментальными данными. Продемонстрирована корректность описания взаимосвязанных и взаимозависимых физических эффектов, сопровождающих формирование льда: процессов тепло- и массообмена, улавливания ледяных кристаллов поверхностью ледяного нароста, а также эрозии льда. На примере модельных объектов показаны преимущества предлагаемой модели для расчета форм ледяных наростов, возникающих в реальных условиях обледенения, включая сочетание различных температур окружающего воздуха, расходов ледяных кристаллов и жидкой воды в кристаллическом облаке.
全文:

作者简介
П. Горячев
ФАУ Центральный институт авиационного моторостроения им. П.И. Баранова
编辑信件的主要联系方式.
Email: pagoryachev@ciam.ru
俄罗斯联邦, Москва
С. Бурцев
ФГБОУ ВО Московский государственный технический университет им. Н.Э. Баумана
Email: burtsev@bmstu.ru
俄罗斯联邦, Москва
参考
- Dezitter F. Overview on In-flight Icing Research // EASA Annual Safety Conference. Paris, France. 2013.
- Norris G. Anti-core Icing Strategies Emerge as FAA Relaxes Restrictions on GEnx-powered 747-8 and 787 // Aviat. Week Space Technol. 2015. V. 177. № 4. 35 p.
- Veres J.P., Jorgenson P.C.E., Jones S.M., Nili S. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory // ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Charlotte, NC, USA. 2017. 10 p.
- Mason J.G., Strapp J.W., Chow P. The Ice Particle Threat to Engines in Flight // AIAA 2006-206.
- Жердев А.А., Горячев А.В., Жулин В.Г., Горячев П.А. Математическая модель процесса фазовых превращений ледяных кристаллов при их движении внутри каналов испытательного стенда и в проточной части газотурбинного двигателя // Инженерный журнал: Наука и инновации. 2013. № 1. С. 65.
- Вараксин А.Ю. Гидрогазодинамика и теплофизика двухфазных потоков с твердыми частицами, каплями и пузырями // ТВТ. 2023. Т. 61. № 6. С. 926.
- Горячев А.В., Горячев П.А., Жулин В.Г., Гребеньков С.А. Расчетно-аналитическое исследование в обеспечение подтверждения эффективности защиты авиационного двигателя от воздействий дождя и шквального града // Авиационные двигатели. 2019. № 4 (5). С. 19.
- Goriachev A., Zhulin V., Goriachev P., Grebenkov S., Savenkov V. Experimental Processing of Methodical Questions of Modeling the Atmospheric Cloud Containing Ice Crystals and Mixed Phase // SAE Tech. Paper № 2019-01-1922. 2019.
- Горячев П.А., Жердев А.А., Жулин В.Г., Савенков В.В. Экспериментальная отработка процесса калибровки потока, содержащего ледяные кристаллы, в обеспечение проведения сертификационных испытаний // Молодежный научно-технический вестник. 2016. № 2. С. 7.
- Бендерский Л.А., Горячев А.В., Горячев П.А., Горячев Д.А., Любимов Д.А., Студенников Е.С. Особенности моделирования тепломассообменных процессов при формировании льда в условиях атмосферного облака, состоящего из переохлажденных капель // ТВТ. 2024. Т. 62. № 2. С. 222.
- Trontin P., Villedieu P. A Comprehensive Accretion Model for Glaciated Icing Conditions // Int. J. Multiphase Flow. 2018. V. 108. P. 105.
- Charton V., Trontin P., Aouizerate G., Villedieu P. Semi-Empirical Modelling of Erosion Phenomena for Ice Crystal Icing Numerical Simulation // SAE Int. 2019-01-1967. 2019. 10 p.
- Bourgault Y., Beaugendre H., Habashi W.G. Development of a Shallow-water Icing Model in FENSAP-ICE // J. Aircraft. 2000. V. 37. № 4. P. 640.
- Ozcer I.A., Baruzzi G.S., Reid T., Habashi W.G., Fossati M., Croce G. FENSAP-ICE: Numerical Prediction of Ice Roughness Evolution, and its Effects on Ice Shapes // SAE Tech. Paper № 2011-38-0024. 2011.
- Жбанов В.А., Стасенко А.Л., Токарев О.Д. Исследование теплообмена капли, ускоряемой потоком воздуха вдоль поверхности твердого тела, при обледенении летательного аппарата // ТВТ. 2022. Т. 60. № 6. С. 860.
- Программный модуль компьютерного моделирования на основе уравнений RANS/URANS («Лазурит-RАNS»). Свидетельство о гос. регистрации программы для ЭВМ № 2019661604. Дата регистрации: 04.09.2019.
- Авдеев Е.E., Булович С.В., Горский Ю.А. Анализ моделей уноса и осаждения капель в дисперсно-кольцевом режиме течения // Научно-технические ведомости CПбПУ. Естественные и инженерные науки. 2019. Т. 25. № 2. С. 54.
- Алипченков В.М., Зайчик Л.И., Зейгарник Ю.А., Соловьев С.Л., Стоник О.Г. Развитие трехжидкостной модели двухфазного потока для дисперсно-кольцевого режима течения в каналах. Осаждение и унос капель // ТВТ. 2002. Т. 40. № 5. С. 772.
- Нигматулин Р.И. Динамика многофазных сред. Ч. 1, 2. М.: Наука, 1987.
- Алипченков В.М., Зайчик Л.И., Зейгарник Ю.А., Соловьев С.Л., Стоник О.Г. Развитие трехжидкостной модели двухфазного потока для дисперсно-кольцевого режима течения в каналах. Размер капель // ТВТ. 2002. Т. 40. № 4. С. 641.
- Roe P.L. Characteristic-based Schemes for the Euler Equations // Annu. Rev. Fluid Mech. 1986. V. 18. P. 337.
- Tong X., Thompson D., Arnoldus Q., Collins E., Luke E. Three-Dimensional Surface Evolution and Mesh Deformation for Aircraft Icing Applications // J. Aircraft. 2017. V. 54. № 3. P. 1047.
- Malik Y.A., Bennani L., Bansmer S., Trontin P., Villedieu P. Experimental and Numerical Investigation of Accretion Inception and Heat Transfer Physics in Ice Crystal Icing // Int. J. Heat Mass Transfer. 2023. V. 214. № 2. P. 124364.
- Reitter L.M., Lohmann H., Schremb M., Roisman I.V., Hussong J., Tropea C. Impact of an Ice Particle onto a Dry Rigid Substrate: Dynamic Sintering of a Residual Ice Cone // Cold Reg. Sci. Technol. 2022. V. 194. 103416.
- Vidaurre G., Hallett J. Particle Impact and Breakup in Aircraft Measurement // J. Atmospheric Ocean Tech. 2008. V. 26. № 5. P. 972.
- Charton V., Senoner J.-M., Trontin P., Villedieu P. Semi-empirical Erosion Model with Particle Size and Liquid Water Content Effects for Ice Crystal Icing Simulations // AIAA Aviation 2020 Forum. Virtual Event. USA. 2020. 2827.
- Baumert A., Bansmer S., Trontin P., Villedieu P. Experimental and Numerical Investigations on Aircraft Icing at Mixed Phase Conditions // Int. J. Heat Mass Transfer. 2018. V. 123. P. 957.
补充文件
