Isolation of chlorogenic acids and caffeine in the stationary phase of Diaspher-110-C10CN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The transition from the traditional C18(I) stationary phases with nonpolar endcapping to the C10CN(II) phase has been shown to contain the terminal polar group leading to a change in selectivity comparable to an increase in the activity of residual silanol groups in phases I. The effect was found in the separation of isomeric monocopheoylquinic acids. Two variants of gradient modes have been proposed using a column of Diaspher-110-C10CN and aqueous acetonitrile, acidified H3PO4 components of the mobile phase for the separation of chlorogenic acids and caffeine from green coffee extracts from various manufacturers. The proposed chromatographic method has been shown as the method that can be used to determine trigonelin, the retention of which increased markedly when phase I was replaced by phase II. The proposed method is used to differentiate the fruits of two types of coffee – Arabica and robusta. It was found that robusta coffee extracts contain a higher amount of chlorogenic acids and caffeine.

Full Text

Restricted Access

About the authors

V. I. Deyneka

Belgorod State National Research University

Author for correspondence.
Email: deineka@bsu.edu.ru
Russian Federation, 85, Pobeda St., Belgorod, 308015

E. Yu. Oleynits

Belgorod State National Research University

Email: deineka@bsu.edu.ru
Russian Federation, 85, Pobeda St., Belgorod, 308015

H. M. Cultid Cabrera

Belgorod State National Research University

Email: deineka@bsu.edu.ru
Russian Federation, 85, Pobeda St., Belgorod, 308015

L. A. Deyneka

Belgorod State National Research University

Email: deineka@bsu.edu.ru
Russian Federation, 85, Pobeda St., Belgorod, 308015

References

  1. Дейнека В.И., Олейниц Е.Ю., Блинова И.П., Дейнека Л.А. Селективность разделения изомерных хлорогеновых кислот в условиях обращенно-фазовой ВЭЖХ // Журн. аналит. химии. 2019. Т. 74. С. 588. (Deineka V.I., Oleinits E.Yu., Blinova I.P., Deineka L.A. Selectivity of the separation of isomeric chlorogenic acids under the conditions of reversed-phase HPLC // J. Anal. Chem. 2019. V. 74. P. 778.)
  2. Ncube E.N., Mhlongo M.I., Piater L.A., Steenkamp P.A., Dubery I.A., Madala N.E. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method // Chem. Central J. 2014. V. 8. P. 66.
  3. Zheng W., Clifford M.N. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China // Food Chem. 2008. V. 106. P. 147.
  4. Clifford M.N., Johnston K.L., Knight S., Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids // J. Agric. Food Chem. 2003. V. 51. P. 2900.
  5. Craig A.P., Fields C., Liang N., Kitts D., Erickson A. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts // Talanta. 2016. V. 154. P. 481.
  6. Bennat C., Engelhardt U.H., Kiehne A., Wirries F.-M., Maier H.G. HPLC Analysis of chlorogenic acid lactones in roasted coffee // Z. Lebensm. Unters. Forsch. 1994. V. 199. P. 17.
  7. Stalmach A., Mullen W., Nagai C., Crozier F. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee // Braz. J. Plant Physiol. 2006. V. 18. P. 253.
  8. Trugo L.C., Macrae R. Chlorogenic acid composition of instant coffees // Analyst. 1984. V. 109. P. 263.
  9. Milligan P.A. Determination of piroxicam and its major metabolites in the plasma, urine and bile of humans by high performance liquid chromatography // J. Chromatogr. 1992. V. 516. P. 121.
  10. Осипов А.С., Нечаева Е.Б. Применение капроновой и циклогексанкарбоновой для анализа бензойной и сорбиновой кислот // Хим.-фарм. журн. 2013. Т. 47. № 47. С. 51. (Osipov A.S., Nechaeva E.B. Use of caproic and cyclohexanecarboxylic acids for determining benzoic and sorbic acids // Pharm. Chem. J. 2013. V. 47. P. 118.)
  11. Ноздрин К.В., Великородный А.А., Осипов А.С., Родионова Г.М. Оптимизация условий хроматографирования бутилгидроксианизола и бутилгидрокситолуола при совместном присутствии // Фармация. 2017. № 5. С. 7.
  12. Дейнека В.И., Кульченко Я.Ю., Дейнека В.И. Хроматографическое поведение антоцианов на стационарной фазе С10CN // Журн. аналит. химии. 2017. Т. 72. С. 1093. (Deineka V.I., Kul’chenko Ya.Yu., Deineka L.A. Chromatographic Behavior of Anthocyanins on a C10CN Stationary Phase // J. Anal. Chem. 2017. V. 72. P. 1233.)
  13. Блинова И.П., Олейниц Е.Ю., Саласина Я.Ю., Дейнека В.И., Ву Тхи Нгок Ань, Нгуен Ван Ань. Одновременное определение хлорогеновых кислот и кофеина в кофе методом обращенно-фазовой высокоэффективной жидкостной хроматографии. // Изв. вузов. Химия и хим. технология. 2023. Т. 66. № 2. С. 45.
  14. McNeff C., Zigan L., Johnson K., Carr P.W., Wang A., Weber-Main A.M. Analytical advantages of highly stable stationary phases for reversed-phase LC // LC GC North America. 2000. V. 18. № 5. P. 514.
  15. Дейнека В.И., Олейниц Е.Ю., Блинова И.П., Дейнека Л.А. Сопоставление двух вариантов карт разделения в обращенно-фазовой жидкостной хроматографии // Журн. физ. химии. 2022. Т. 96. С. 1195. (Deineka V.I., Oleinits E.Yu., Blinova I.P., Deineka L.A. Comparing two versions of a separation map in reversed phase liquid chromatography // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1768.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Separation chart of the second type 3CQA (1), 4CQA (2), 5CQA (3) and caffeine (4) on a stationary phase Kromasil 100-5C18 in mobile phases of the ethanol–0.2 vol. % orthophosphoric acid–water system at 30°C.

Download (16KB)
3. Fig. 2. Separation chart of the second type 3CQA (1), 4CQA (2), 5CQA (3), caffeine (4) and trigonelline (5) on the stationary phase Diasphere 110-C10CN in the mobile phases of the ethanol–0.2 vol. % orthophosphoric acid–water system at 30°C.

Download (17KB)
4. Fig. 3. Separation of 3CQA (1), 4CQA (2), 5CQA (3), caffeine (4) and trigonelline (5) on the stationary phase Kromasil 100-5C18: A325 and A273, recorded at wavelengths of 325 nm and 273 nm, respectively, and on the stationary phase Diasphere-110-C10CN: B325 and B273; mobile phase 10 vol. % ethanol and 0.2 vol. % orthophosphoric acid in water, 0.8 ml/min, 30°C.

Download (19KB)
5. Fig. 4. Separation chart of the first type 4CQA (2), 5CQA (3), caffeine (4), 3,4diCQA (6), 3,5diCQA (7) and 4,5diCQA (8) on the stationary phase Diasphere 110-C10CN in the mobile phases of the ethanol–0.2 vol. % orthophosphoric acid–water system at 30°C.

Download (21KB)
6. Fig. 5. Separation of the main components of green coffee extract: 3CQA (1), 4CQA (2), 5CQA (3), caffeine (4), trigonelline (5), 5FQA (9), 3,4diCQA (6), 3,5diCQA (7) and 4,5diCQA (8) on a Diasphere 110-C10CN stationary phase with gradient elution in modes 1 (A273 and A325) and 2 (B273 and B325); recording of chromatograms at 273 and 325 nm at 30°C.

Download (18KB)

Copyright (c) 2024 Russian Academy of Sciences