Dechlorination of chloride-sulfate solutions using ozone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetic characteristics of the chlorine release reaction during oxidation of chloride ion in solutions of Na+ – H+ – HSO4 – Cl, Mg2+ – H+ – HSO4 – Cl, Zn2+ – H+ – HSO4 – Cl, Cu2+ – H+ – HSO4 – Cl, Fe3+ – H+ – HSO4 – Cl, Mg2+ – H+ – Cl, Ca2+ – H+ – Cl are found. Under similar experimental parameters, the reaction rate takes significantly different values depending on the nature of the added salt. This is due to the possibility of catalyzing the reaction of O3 with Cl(aq) cations of some metals and the formation of chloride and sulfate metal complexes, which leads to changes in the actual concentrations of reagents, as well as changes in the ozone solubility. For aqueous solutions of zinc sulfate and magnesium sulfate with concentrations of 0–1 M at temperatures of 20 and 25°C, ozone solubility, values of the Henry constant and Sechenov coefficient are found.

Full Text

Restricted Access

About the authors

A. V. Levanov

M. V. Lomonosov Moscow State University, Department of Chemistry

Author for correspondence.
Email: levanovav@my.msu.ru

Department of Chemistry

Russian Federation, Moscow

A. O. Orudzhev

Branch of M. V. Lomonosov Moscow State University in Baku

Email: levanovav@my.msu.ru
Azerbaijan, Baku

O. Y. Isaikina

M. V. Lomonosov Moscow State University, Department of Chemistry

Email: levanovav@my.msu.ru

Department of Chemistry

Russian Federation, Moscow

References

  1. Lowe J.B. // Corrosion. 1961 V. 17. № 3. P. 26.
  2. Wilkinson R.G. // Platinum Metals Rev. 1961. V. 5. № 4. P. 128.
  3. Kolman D.G., Ford D.K., Butt D.P., Nelson T.O. // Corrosion Sci. 1997. V. 39. № 12. P. 2067.
  4. Li Y., Yang Z., Yang K. et al. // Sci. Tot. Env. 2022. V. 821. P. 153174.
  5. Duan L., Yun Q., Jiang G. et al. // J. Env. Management. 2024. V. 353. P. 120184.
  6. Cattant F., Crusset D., Féron D. // Materials Today. 2008. V. 11. № 10. P. 32.
  7. Sun B., Liu X., Liu W. et al. // Hydrometallurgy. 2020. V. 198. P. 105508.
  8. Wu X., Liu Z., Liu X. // Hydrometallurgy. 2013. V. 134–135. P. 62.
  9. Liu W., Zhang R., Liu Z., Li C. // Hydrometallurgy. 2016. V. 160. P. 147.
  10. Xiao H.-F., Chen Q., Cheng H. et al. // J. Membrane Sci. 2017. V. 537. P. 111.
  11. Pierce R.A., Campbell-Kelly R.P., Visser A.E., Laurinat J.E. // Ind. Eng. Chem. Res. 2007. V. 46. № 8. P. 2372.
  12. Леванов А.В., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. 2019. Т. 93. № 9. С. 1328. [Levanov A.V., Isaikina O.Y., Lunin V.V. // Russ. J. Phys. Chem. A. 2019. V. 93. № 9. P. 1677.]
  13. Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Кинетика и катализ. 2003. Т. 44. № 6. С. 810. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // Kinet. Catal. 2003. V. 44. № 6. P. 740].
  14. Smith R.M., Martell A.E. Critical Stability Constants. V. 4. Inorganic Complexes. New York: Plenum Press, 1976.
  15. Леванов А.В., Кусков И.В., Койайдарова К.Б. и др. // Кинетика и катализ. 2005. Т. 46. № 1. С. 147. [Levanov A.V., Kuskov I.V., Koiaidarova K.B. et al. // Kinet. Catal. 2005. V. 46. № 1. P. 138.]
  16. Rischbieter E., Stein H., Schumpe A. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 338.
  17. Clever H.L., Battino R., Miyamoto H. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. № 3. P. 033102.
  18. Конник Э.И. // Успехи химии. 1977. Т. 46. № 6. С. 1097. [Konnik E.I. // Russ. Chem. Rev. 1977. V. 46. № 6. P. 577].
  19. Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of a bubble reactor.

Download (217KB)
3. Fig. 2. Dependences of the rate of chlorine release from acidic chloride-sulfate solutions on the concentration of ozone in the source gases. Composition of the solutions:

Download (172KB)
4. Fig. 3. Dependences of the specific rate of chlorine evolution on the concentration of hydrogen ions in solutions with a Cl concentration of 1 M and the sum of equivalent concentrations of H+ cations and metal of 1 M (metal cation = Na+, Mg2+, or Ca2+). The dots are the experimental results of this work for MgCl2 + HCl, CaCl2 + HCl solutions, the dotted line is the calculation for the NaCl + HCl solution based on the data of [13].

Download (140KB)
5. Fig. 4. Values ​​of the Henry constant of ozone in aqueous solutions of ZnSO4, MgSO4 and Na2SO4 depending on the concentration of salt C (♦, ● – results of the present work, ○, ■ – literature data [16]) at 20 (a) and 25°C (b).

Download (252KB)

Copyright (c) 2025 Russian Academy of Sciences