Introduction of cationizing agents in soft ionization processes of short-chain peptides: laser desorption and electrospraying

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A mass spectrometric study of ionization processes of short peptides of triglycine, alanylglutamine, and prolylleucine by electrospray ionization (ESI) and surface-activated laser desorption/ionization (SALDI) methods in the presence of copper sulfate crystalline hydrate is performed. It is shown that during ESI ionization, the presence of copper ions in the solution initiates the aggregation of peptide molecules with the formation of large associates of up to 7-8 peptide molecules. The influence of the nature of peptides on the nature of ionization processes is studied. At the same time, competitive cationization of peptide molecules by copper ions with the formation of an M+Cu+ ion occurs during ionization by SALDI method. Peptide fragmentation and copper cationization of decarboxylation products are also typical.

Full Text

Restricted Access

About the authors

E. S. Kuznetsova

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: eskuznetsova8@yandex.ru
Russian Federation, Moscow, 119071

I. S. Pytskii

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: eskuznetsova8@yandex.ru
Russian Federation, Moscow, 119071

A. K. Buryak

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: eskuznetsova8@yandex.ru
Russian Federation, Moscow, 119071

References

  1. Budimir N., Blais J.-Cl., Fournier F., Tabet J.-Cl. // Rapid Commun. Mass Spectrom. 2006. V. 20. P. 680. https://doi.org/10.1002/rcm.2363
  2. Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
  3. Cohen L.H., Gusev A.I. // Anal. Bioanal. Chem. 2002. V. 373. P. 571. https://doi.org/10.1007/s00216-002-1321-z
  4. Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
  5. Lin L., Weng C., Chen Q. // Nucl. Instrum. Methods Phys. Res. B. V. 414. № 1. P. 79.
  6. Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
  7. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Colloid Journal. 2018. № 80. P. 427. https://doi.org/10.1134/S1061933X18040105
  8. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Protection of Metals and Physical Chemistry of Surfaces. 2020. № 56. P. 272. https://doi.org/10.1134/S2070205120020203
  9. Xinyao Ju, Shuzhen Cheng, Han Li et al. // Food Chemistry. 2022. V. 390. https://doi.org/10.1016/j.foodchem.2022.133146
  10. Iavorschi M., Lupăescu A., Darie-Ion L. et al. // Pharmaceuticals. 2022. V. 15(9). https://doi.org/10.3390/ph15091096

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulas of oligopeptides.

Download (165KB)
3. Fig. 2. ERI mass spectrum of triglycine with the addition of a solution of CuSO4 8H2O salt.

Download (263KB)
4. Fig. 3. ERI mass spectrum of alanyl glutamine with the addition of a solution of CuSO4 8H2O salt.

Download (347KB)
5. Fig. 4. ERI mass spectrum of alanylglutamine in the presence of a CuSO4 8H2O salt solution with a cluster distribution of ions.

Download (246KB)
6. Fig. 5. ERI mass spectrum of prolyl leucine with the addition of a solution of CuSO4 8H2O salt.

Download (322KB)
7. Fig. 6. SALDI mass spectrum of triglycine, alanyl glutamine and prolyl leucine with the addition of a solution of CuSO4 8H2O salt.

Download (530KB)

Copyright (c) 2025 Russian Academy of Sciences