Исследование спектра ионизации 6,6-диметил-фульвена методами алгебраического диаграммного построения и связанных кластеров

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Электронная структура и спектр ионизации 6,6-диметил-фульвена рассчитаны с использованием метода алгебраического диаграммного построения третьего порядка для одночастичной функции Грина (IP-ADC(3)) и метода уравнений движения для связанных кластеров в приближении модели однократных и двукратных возбуждений (IP-EOM-CCSD). Результаты использованы для интерпретации недавно полученного фотоэлектронного спектра 6,6-диметил-фульвена [M. H. Palmer et. al, Chem. Phys. Lett. 2022, 796, 139558]. Предложен ряд новых отнесений, среди которых наиболее значимым является отнесение ранее неотнесенного плеча третьей фотоэлектронной полосы в районе 10.5 эВ, которое согласно нашим IP-ADC(3)-расчетам, образовано сателлитными переходами, связанными с p-орбиталями фульвенового кольца 2a2 и 2b1. Полученные в работе данные также позволяют полагать, что у метода IP-EOM-CCSD и эквивалентных ему подходов имеются трудности с корректным описанием сателлитных состояний.

Texto integral

Acesso é fechado

Sobre autores

А. Трофимов

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

Autor responsável pela correspondência
Email: abtrof@mail.ru
Rússia, 664003 Иркутск; 664033 Иркутск

А. Скитневская

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Rússia, 664003 Иркутск

А. Белоголова

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

Email: abtrof@mail.ru
Rússia, 664003 Иркутск; 664033 Иркутск

Э. Якимова

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Rússia, 664003 Иркутск

Е. Громов

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
Rússia, 664003 Иркутск

Bibliografia

  1. Preethalayam P., Krishnan K.S., Thulasi S. и др. // Chem. Rev. 2017. Т. 117. № 5. С. 3930. https://doi.org/10.1021/acs.chemrev.6b00210
  2. Swan E., Platts K., Blencowe A. // Beilstein J. Org. Chem. 2019. Т. 15. С. 2113. https://doi.org/10.3762/bjoc.15.209
  3. Martin-Somer A., Xue X.-S., Jamieson C.S. и др. // J. Am. Chem. Soc. 2023. Т. 145. № 7. С. 4221. https://doi.org/10.1021/jacs.2c12871
  4. Lindner M.M., Alachraf M.W., Mitschke B. и др. // Angew. Chemie Int. Ed. 2023. Т. 62. № 35. C. e202303119. https://doi.org/10.1002/anie.202303119
  5. Scott A.P., Agranat I., Biedermann P.U. и др. // J. Org. Chem. 1997. Т. 62. № 7. С. 2026. https://doi.org/10.1021/jo962407l
  6. Replogle E.S., Trucks G.W., Staley S.W. // J. Phys. Chem. 1991. Т. 95. № 18. С. 6908. https://doi.org/10.1021/j100171a031
  7. Gleiter R., Heilbronner E., Meijere A. de. // Helv. Chim. Acta. 1971. Т. 54. № 4. С. 1029. https://doi.org/10.1002/hlca.19710540409
  8. Palmer M.H., Coreno M., De Simone M. и др. // Chem. Phys. Lett. 2022. Т. 796. С. 139558. https://doi.org/10.1016/j.cplett.2022.139558
  9. Cederbaum L.S., Domcke W., Schirmer J., Von Niessen W. Adv. Chem. Phys. / Eds. I. Prigogine, S.A. Rice., Wiley Online Library. 1986. Т. LXV. С. 115. https://doi.org/10.1002/9780470142899.ch3
  10. Nakatsuji H., Hirao K. // J. Chem. Phys. 1978. Т. 68. № 5. С. 2053. https://doi.org/10.1063/1.436028
  11. Nakatsuji H. // Chem. Phys. Lett. 1979. Т. 67. № 2–3. С. 334. https://doi.org/10.1016/0009-2614(79)85173-8
  12. Ehara M., Hasegawa J., Nakatsuji H. // Theory and Applications of Computational Chemistry.: Elsevier, 2005. С. 1099. https://doi.org/10.1016/B978-044451719-7/50082-2
  13. Schirmer J., Cederbaum L.S., Walter O. // Phys. Rev. A. 1983. Т. 28. № 3. С. 1237. https://doi.org/10.1103/PhysRevA.28.1237
  14. Schirmer J., Trofimov A.B., Stelter G. // J. Chem. Phys. 1998. Т. 109. № 12. С. 4734. https://doi.org/10.1063/1.477085
  15. Dempwolff A.L., Paul A.C., Belogolova A.M. и др. // Ibid. 2020. Т. 152. № 2. С. 024113. https://doi.org/10.1063/1.5137792
  16. Patanen M., Abid A.R., Pratt S.T. и др. // Ibid. 2021. Т. 155. № 5. С. 054304. https://doi.org/10.1063/5.0058983
  17. Trofimov A.B., Holland D.M.P., Powis I. и др. // Ibid. 2017. Т. 146. № 24. С. 244307. https://doi.org/10.1063/1.4986405
  18. Nooijen M., Bartlett R.J. // Ibid. 1995. Т. 102. № 9. С. 3629. https://doi.org/10.1063/1.468592
  19. Sinha D., Mukhopadhya D., Chaudhuri R. и др. // Chem. Phys. Lett. 1989. Т. 154. № 6. С. 544. https://doi.org/10.1016/0009-2614(89)87149-0
  20. Stanton J.F., Gauss J. // J. Chem. Phys. 1994. Т. 101. № 10. С. 8938. https://doi.org/10.1063/1.468022
  21. Dunning T.H. // Ibid. 1989. Т. 90. № 2. С. 1007. https://doi.org/10.1063/1.456153
  22. Kendall R.A., Dunning T.H., Harrison R.J. // Ibid. 1992. Т. 96. № 9. С. 6796. https://doi.org/10.1063/1.462569
  23. Shao Y., Gan Z., Epifanovsky E. et al. // Mol. Phys. 2015. Т. 113. № 2. С. 184. https://doi.org/10.1080/00268976.2014.952696
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., X. Li, Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J. Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16 Revision A.03, Gaussian, Inc., Wallingford, CT, 2016
  25. Schaftenaar G., Vlieg E., Vriend G. // J. Comput. Aided. Mol. Des. 2017. Т. 31. № 9. С. 789. https://doi.org/10.1007/s10822-017-0042-5
  26. Swiderek P., Michaud M., Sanche L. // J. Chem. Phys. 1995. Т. 103. № 19. С. 8424. https://doi.org/10.1063/1.470153
  27. Asmis K.R., Allan M., Schafer O. et al. // J. Phys. Chem. A. 1997. Т. 101. № 11. С. 2089. https://doi.org/10.1021/jp963129x
  28. Trofimov A., Schirmer J., Holland D.M. P. et al. // Chem. Phys. 2001. Т. 263. № 1. С. 167. https://doi.org/10.1016/S0301-0104(00)00334-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the most stable conformer of 6,6-dimethyl-fulvene.

Baixar (72KB)
3. Fig. 2. 1-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (15KB)
4. Fig. 2. 1-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (14KB)
5. Fig. 2. 2-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (15KB)
6. Fig. 2. 2-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (17KB)
7. Fig. 2. 3-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (18KB)
8. Fig. 2. 3-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (15KB)
9. Fig. 2. 4-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (14KB)
10. Fig. 2. 4-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (16KB)
11. Fig. 2. 5-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (17KB)
12. Fig. 2. 5-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (13KB)
13. Fig. 2. 6-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (16KB)
14. Fig. 2. 6-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (15KB)
15. Fig. 2. 7-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (17KB)
16. Fig. 2. 7-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

Baixar (16KB)
17. Fig. 3. Theoretical (IP-ADC(3)/cc-pVTZ), calculated in this work, and experimental, from work [8], ionization spectra of 6,6-dimethyl-fulvene. The theoretical spectrum is shifted by –0.30 eV relative to the experimental one; vertical transitions, which can be considered as the main lines (with intensities P ≥ 0.6), are shown in blue; transitions corresponding to satellite lines (P < 0.6) are shown in red.

Baixar (224KB)
18. Fig. 4. Theoretical (IP-EOM-CCSD/cc-pVTZ), calculated in this work, and experimental, from work [8], ionization spectra of 6,6-dimethyl-fulvene. The theoretical spectrum is shifted by –0.2 eV relative to the experimental one; vertical transitions, which can be considered as the main lines (with intensities P ≥ 0.6), are shown in blue, and transitions corresponding to satellite lines (P < 0.6) are shown in red.

Baixar (214KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024