Исследование спектра ионизации 6,6-диметил-фульвена методами алгебраического диаграммного построения и связанных кластеров

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Электронная структура и спектр ионизации 6,6-диметил-фульвена рассчитаны с использованием метода алгебраического диаграммного построения третьего порядка для одночастичной функции Грина (IP-ADC(3)) и метода уравнений движения для связанных кластеров в приближении модели однократных и двукратных возбуждений (IP-EOM-CCSD). Результаты использованы для интерпретации недавно полученного фотоэлектронного спектра 6,6-диметил-фульвена [M. H. Palmer et. al, Chem. Phys. Lett. 2022, 796, 139558]. Предложен ряд новых отнесений, среди которых наиболее значимым является отнесение ранее неотнесенного плеча третьей фотоэлектронной полосы в районе 10.5 эВ, которое согласно нашим IP-ADC(3)-расчетам, образовано сателлитными переходами, связанными с p-орбиталями фульвенового кольца 2a2 и 2b1. Полученные в работе данные также позволяют полагать, что у метода IP-EOM-CCSD и эквивалентных ему подходов имеются трудности с корректным описанием сателлитных состояний.

全文:

受限制的访问

作者简介

А. Трофимов

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

编辑信件的主要联系方式.
Email: abtrof@mail.ru
俄罗斯联邦, 664003 Иркутск; 664033 Иркутск

А. Скитневская

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
俄罗斯联邦, 664003 Иркутск

А. Белоголова

ФГБОУ ВО Иркутский государственный университет; ФГБУН Иркутский институт химии им. А. Е. Фаворского СО РАН

Email: abtrof@mail.ru
俄罗斯联邦, 664003 Иркутск; 664033 Иркутск

Э. Якимова

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
俄罗斯联邦, 664003 Иркутск

Е. Громов

ФГБОУ ВО Иркутский государственный университет

Email: abtrof@mail.ru
俄罗斯联邦, 664003 Иркутск

参考

  1. Preethalayam P., Krishnan K.S., Thulasi S. и др. // Chem. Rev. 2017. Т. 117. № 5. С. 3930. https://doi.org/10.1021/acs.chemrev.6b00210
  2. Swan E., Platts K., Blencowe A. // Beilstein J. Org. Chem. 2019. Т. 15. С. 2113. https://doi.org/10.3762/bjoc.15.209
  3. Martin-Somer A., Xue X.-S., Jamieson C.S. и др. // J. Am. Chem. Soc. 2023. Т. 145. № 7. С. 4221. https://doi.org/10.1021/jacs.2c12871
  4. Lindner M.M., Alachraf M.W., Mitschke B. и др. // Angew. Chemie Int. Ed. 2023. Т. 62. № 35. C. e202303119. https://doi.org/10.1002/anie.202303119
  5. Scott A.P., Agranat I., Biedermann P.U. и др. // J. Org. Chem. 1997. Т. 62. № 7. С. 2026. https://doi.org/10.1021/jo962407l
  6. Replogle E.S., Trucks G.W., Staley S.W. // J. Phys. Chem. 1991. Т. 95. № 18. С. 6908. https://doi.org/10.1021/j100171a031
  7. Gleiter R., Heilbronner E., Meijere A. de. // Helv. Chim. Acta. 1971. Т. 54. № 4. С. 1029. https://doi.org/10.1002/hlca.19710540409
  8. Palmer M.H., Coreno M., De Simone M. и др. // Chem. Phys. Lett. 2022. Т. 796. С. 139558. https://doi.org/10.1016/j.cplett.2022.139558
  9. Cederbaum L.S., Domcke W., Schirmer J., Von Niessen W. Adv. Chem. Phys. / Eds. I. Prigogine, S.A. Rice., Wiley Online Library. 1986. Т. LXV. С. 115. https://doi.org/10.1002/9780470142899.ch3
  10. Nakatsuji H., Hirao K. // J. Chem. Phys. 1978. Т. 68. № 5. С. 2053. https://doi.org/10.1063/1.436028
  11. Nakatsuji H. // Chem. Phys. Lett. 1979. Т. 67. № 2–3. С. 334. https://doi.org/10.1016/0009-2614(79)85173-8
  12. Ehara M., Hasegawa J., Nakatsuji H. // Theory and Applications of Computational Chemistry.: Elsevier, 2005. С. 1099. https://doi.org/10.1016/B978-044451719-7/50082-2
  13. Schirmer J., Cederbaum L.S., Walter O. // Phys. Rev. A. 1983. Т. 28. № 3. С. 1237. https://doi.org/10.1103/PhysRevA.28.1237
  14. Schirmer J., Trofimov A.B., Stelter G. // J. Chem. Phys. 1998. Т. 109. № 12. С. 4734. https://doi.org/10.1063/1.477085
  15. Dempwolff A.L., Paul A.C., Belogolova A.M. и др. // Ibid. 2020. Т. 152. № 2. С. 024113. https://doi.org/10.1063/1.5137792
  16. Patanen M., Abid A.R., Pratt S.T. и др. // Ibid. 2021. Т. 155. № 5. С. 054304. https://doi.org/10.1063/5.0058983
  17. Trofimov A.B., Holland D.M.P., Powis I. и др. // Ibid. 2017. Т. 146. № 24. С. 244307. https://doi.org/10.1063/1.4986405
  18. Nooijen M., Bartlett R.J. // Ibid. 1995. Т. 102. № 9. С. 3629. https://doi.org/10.1063/1.468592
  19. Sinha D., Mukhopadhya D., Chaudhuri R. и др. // Chem. Phys. Lett. 1989. Т. 154. № 6. С. 544. https://doi.org/10.1016/0009-2614(89)87149-0
  20. Stanton J.F., Gauss J. // J. Chem. Phys. 1994. Т. 101. № 10. С. 8938. https://doi.org/10.1063/1.468022
  21. Dunning T.H. // Ibid. 1989. Т. 90. № 2. С. 1007. https://doi.org/10.1063/1.456153
  22. Kendall R.A., Dunning T.H., Harrison R.J. // Ibid. 1992. Т. 96. № 9. С. 6796. https://doi.org/10.1063/1.462569
  23. Shao Y., Gan Z., Epifanovsky E. et al. // Mol. Phys. 2015. Т. 113. № 2. С. 184. https://doi.org/10.1080/00268976.2014.952696
  24. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., X. Li, Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J. Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16 Revision A.03, Gaussian, Inc., Wallingford, CT, 2016
  25. Schaftenaar G., Vlieg E., Vriend G. // J. Comput. Aided. Mol. Des. 2017. Т. 31. № 9. С. 789. https://doi.org/10.1007/s10822-017-0042-5
  26. Swiderek P., Michaud M., Sanche L. // J. Chem. Phys. 1995. Т. 103. № 19. С. 8424. https://doi.org/10.1063/1.470153
  27. Asmis K.R., Allan M., Schafer O. et al. // J. Phys. Chem. A. 1997. Т. 101. № 11. С. 2089. https://doi.org/10.1021/jp963129x
  28. Trofimov A., Schirmer J., Holland D.M. P. et al. // Chem. Phys. 2001. Т. 263. № 1. С. 167. https://doi.org/10.1016/S0301-0104(00)00334-7

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the most stable conformer of 6,6-dimethyl-fulvene.

下载 (72KB)
3. Fig. 2. 1-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (15KB)
4. Fig. 2. 1-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (14KB)
5. Fig. 2. 2-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (15KB)
6. Fig. 2. 2-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (17KB)
7. Fig. 2. 3-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (18KB)
8. Fig. 2. 3-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (15KB)
9. Fig. 2. 4-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (14KB)
10. Fig. 2. 4-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (16KB)
11. Fig. 2. 5-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (17KB)
12. Fig. 2. 5-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (13KB)
13. Fig. 2. 6-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (16KB)
14. Fig. 2. 6-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (15KB)
15. Fig. 2. 7-1. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (17KB)
16. Fig. 2. 7-2. Upper occupied MOs of 6,6-dimethyl-fulvene (from HOMO to HOMO-13), their symmetries and energies according to calculation data in the HF/cc-pVTZ approximation, as well as qualitative assignments to different types (s and p).

下载 (16KB)
17. Fig. 3. Theoretical (IP-ADC(3)/cc-pVTZ), calculated in this work, and experimental, from work [8], ionization spectra of 6,6-dimethyl-fulvene. The theoretical spectrum is shifted by –0.30 eV relative to the experimental one; vertical transitions, which can be considered as the main lines (with intensities P ≥ 0.6), are shown in blue; transitions corresponding to satellite lines (P < 0.6) are shown in red.

下载 (224KB)
18. Fig. 4. Theoretical (IP-EOM-CCSD/cc-pVTZ), calculated in this work, and experimental, from work [8], ionization spectra of 6,6-dimethyl-fulvene. The theoretical spectrum is shifted by –0.2 eV relative to the experimental one; vertical transitions, which can be considered as the main lines (with intensities P ≥ 0.6), are shown in blue, and transitions corresponding to satellite lines (P < 0.6) are shown in red.

下载 (214KB)

版权所有 © Russian Academy of Sciences, 2024