A FAST NUMERICAL METHOD FOR THE SOURCE RECONSTRUCTION IN THE COAGULATION-FRAGMENTATION EQUATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A fast numerical method is proposed for the problem of restoring the source function in the Smoluchowski coagulation-fragmentation equation. The proposed method is based on the earlier work with a more detailed description of the transition from the coagulation-fragmentation equation to the final system of variational equations and the iterative process. Exploitation of the low-rank matrices has been introduced into this process to reduce the computational complexity of each iteration. The proposed methodology allows speeding up the calculations by thousands of times without losing the accuracy of the original approach.

About the authors

R. T Zaks

Marchuk Institute of Computational Mathematics RAS; Lomonosov Moscow State University

Email: zaks.robert@bk.ru
Moscow, Russia

S. A Matveev

Lomonosov Moscow State University; Marchuk Institute of Computational Mathematics RAS

Email: matseralex@gmail.com
Moscow, Russia

V. P Shutyaev

Marchuk Institute of Computational Mathematics RAS

Moscow, Russia

References

  1. Brilliantov N., Krapivsky P.L., Bodrova A., Spahn F., Hayakawa H., Stadnichuk V., Schmidt J. Size distribution of particles in Saturn’s rings from aggregation and fragmentation // Proceed. Nation. Acad. Sci. 2015. T. 112. №. 31. C. 9536–9541.
  2. Sabelfeld K.K., Eremeev G. A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation // Monte Carlo Meth. Appl. 2018. T. 24. №. 3. C. 193–202.
  3. Алоян А. Е. Динамика и кинетика газовых примесей и аэрозолей в атмосфере. М.: ИВМ РАН, 2002.
  4. Coufort C., Bouyer D., Line A., Haut B. Modelling of flocculation using a population balance equation // Chemic. Engineer. Proc.: Process Intensificat. 2007. V. 46. № 12. P. 1264–1273.
  5. Zhamsueva G., Zayakhanov A., Teydypov V., Dementeva A., Balzhanov T. Spatial-temporal variability of small gas impurities over lake Baikal during the forest fires in the summer of 2019 // Atmosphere. 2020. V. 12. № 1. P. 20.
  6. Brilliantov N.V., Zagidullin R.R., Matveev S.A., Smirnov A.P. Aggregation kinetics in sedimentation: Effect of diffusion of particles // Comput. Math. and Math. Phys. 2023. V. 63. № 4. P. 596–605.
  7. Purohit A., Velizhanin K.A. Kinetics of carbon condensation in detonation of high explosives: First-order phase transition theory perspective // J. Chemic. Phys. 2021. T. 155. № 16.
  8. Tanxun B.A. Уравнение Смолуховского. М.: Физматлит, 2002.
  9. Melzak Z.A. A scalar transport equation // Transact. Amer. Math. Soc. 1957. V. 85. № 2. P. 547–560.
  10. McLeod J.B. On an infinite set of non-linear differential equations // Quarterly J. Math. 1962. V. 13. № 1. P. 119–128.
  11. Mirzaev I., Byrne E.C., Bortz D.M. An inverse problem for a class of conditional probability measure-dependent evolution equations // Inverse Problem. 2016. 32.9: 095005.
  12. Agoshkov V.I., Dubovski P.B. Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation // Russ. J. Numer. Anal. Math. Model. 2002. V. 17. № 4. P. 319–330.
  13. Mameeea C.A., Tupmountukova E.E., Coupino A.П., Eputauamno H.B. Быстрый метод решения уравнений агрегационно-фрагментационной кинетики типа уравнений Смолуховского // Вычисл. методы и программирование. 2014. Т. 15. № 1. С. 1–8.
  14. Matveev S.A., Smirnov A.P., Tyryshnikov E.E. A fast numerical method for the Cauchy problem for the Smoluchowski equation // J. Comput. Phys. 2015. V. 282. P. 23–32.
  15. Tyryshnikov E.E. A brief introduction to numerical analysis. Springer Science & Business Media, 1997.
  16. Пененко А.В., Сашкова А.Б. Идентификация источника в уравнении Смолуховского с использованием ансамбля решений сопряженного уравнения // Сиб. журн. вычисл. матем. 2020. Т. 23. № 2. С. 183–199.
  17. Penenko A.V. A Newton–Kantorovich method in inverse source problems for production-destruction models with time series-type measurement data // Numer. Analyse. Appl. 2019. V. 12. P. 51–69.
  18. Шутаев В.П. Операторы управления и итерационные алгоритмы в задачах вариационного усвоения данных. М.: Наука, 2001.
  19. Armijo L. Minimization of functions having Lipschitz continuous first partial derivatives // Pacific J. Math. 1966. V. 16. № 1. P. 1–3.
  20. Wolfe P. Convergence conditions for ascent methods // SIAM Rev. 1969. V. 11. № 2. P. 226–235.
  21. Желиков Д.А., Tupmountukova E.E. Параллельная реализация матричного крестового метода // Вычисл. методы и программирование. 2015. Т. 16. С. 369–375.
  22. Osinsky A. Polynomial time p-locally maximum volume search // Calcolo. 2023. V. 60. № 3. P. 42.
  23. Zamarashkin N.L., Osinsky A.I. On the accuracy of cross and column low-rank maxvol approximations in average // Comput. Math. and Math. Phys. 2021. V. 61. № 5. P. 786–798.
  24. Tyryshnikov E.E. Piecewise separable matrices // Calcolo. 2005. V. 42. № 3–4. P. 243–248.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences