APPLICATION OF THE MOSAIC-SKELETON MATRIX APPROXIMATION METHOD IN ELECTROMAGNETIC SCATTERING PROBLEMS
- Authors: Setukha A.V1,2, Stavtsev S.L2, Fetisov S.N3, Mukhin A.N3
-
Affiliations:
- Lomonosov Moscow State University
- ICM RAS
- Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
- Issue: Vol 65, No 7 (2025)
- Pages: 1178-1195
- Section: General numerical methods
- URL: https://freezetech.ru/0044-4669/article/view/688555
- DOI: https://doi.org/10.31857/S0044466925070083
- EDN: https://elibrary.ru/JXZNPM
- ID: 688555
Cite item
Abstract
Algorithms for solving electromagnetic wave scattering problems in the frequency domain using the method of integral equations, as well as using a model of physical optics that takes into account the re-reflection of waves, are considered. In both cases, the main computational costs, both in terms of calculation time and in terms of the required machine memory, are associated with storing dense matrices of the interaction of discrete elements and performing operations with these matrices. The features of applying the mosaic-skeleton approximation method to such matrices and the possibilities of this method in this class of problems are analyzed.
About the authors
A. V Setukha
Lomonosov Moscow State University; ICM RAS
Email: setuhnav@rambler.ru
Moscow, Russia; Moscow, Russia
S. L Stavtsev
ICM RAS
Email: sstass2000@mail.ru
Moscow, Russia
S. N Fetisov
Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
Email: sergey.fetisov@okb.umpo.ru
Moscow, Russia
A. N Mukhin
Lyulka Design Bureau, UEC Ufa Engine–Building Industrial Group branch
Email: powersystems@yandex.ru
Moscow, Russia
References
- Davidson D.B. Computational Electromagnetics for RF and Microwave Engineering. Cambridge Univer. Press, 2011.
- Paknys R. Applied Frequency-Domain Electromagnetics. Wiley-IEEE, 2016.
- Григорьев А.Д. Методы вычислительной электродинамики. М.: Физматлит, 2012.
- Bondeson A., Rylander T., Ingelström P. Computational Electromagnetics. Springer Sci., 2005.
- Sumithra P., Thiripurasundari D. A review on computational electromagnetics methods // Adv. Electromagnet. 2017. V. 6. № 1.
- Volakis J.L., Sertel K. Integral Equation Methods for Electromagnetics. SciTech Publ., 2012.
- Gibson W. The Method of Moments in Electromagnetics. Chapman and Hall/CRC, Boca Raton, 2008.
- Tyryshnikov E. Mosaic-skeleton approximations // Calcolo. 1999. V. 33. P. 47–57.
- Iopeлino C.A., Замаранжин Н.Л., Тыртышинков Е.Е. Псевдоскелетные аппроксимации матриц // Докл. АН. 1995. Т. 343. № 2. С. 151–152.
- Tyryshnikov E. Incomplete cross approximation in the mosaic-skeleton method // Comput. 2000. V. 64. P. 367–380.
- Уфимцев П.Я. Теория дифракционных краевых волн в электродинамике. Введение в физическую теорию дифракции. М.: БИНОМ. Лаборатория знаний, 2012.
- Уфимцев П.Я. Метод краевых волн в физической теории дифракции. Сов. радио, 1962.
- de Adana F.S. Practical Applications of Asymptotic Techniques in Electromagnetics. Artech House, 2011.
- Seukha A.V., Stavtsev S.L., Tref’yakova R.M. Application of mosaic-skeleton approximations of matrices in the physical optics method for electromagnetic scattering problems // Comput. Math. and Math. Phys. 2022. V. 62. № 9. P. 1424–1437.
- Антонов В.А., Никифоров И.И., Холшевичков К.В. Элементы теории гравитационного потенциала и некоторые случаи его явного выражения СПб гос. университет, 2008.
- Арагіноч А.А., Seukha A.V., Stavtsev S.L. Parallel implementation for some applications of integral equations method // Lobachevskii J. Math. 2018. V. 39. № 4. P. 477–485.
- Saad Y., Martin H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. Sci. and Statist. Comput. 1986. V. 7. № 3. P. 856–869.
- Тыртышинков Е.Е. Методы численного анализа. М.: Изд. центр “Академия”, 2007.
- Tromeur-Dervout D., Vassilevski Y. Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations // J. Comput. Phys. 2006. V. 219. № 1. P. 210–227.
- Sukmanyuk S., Zhelikov D., Valiakhmetov B. Generalized minimal residual method for systems with multiple righthand sides // arXiv preprint arXiv:2408.05513 2024.
- https://cluster2.inm.ras.ru/
Supplementary files
